HETEROSIS FOR SEED COTTON YIELD AND QUALITY CHARACTERS IN UPLAND COTTON (G. hirsutum L.)

NAKUM, J. S. AND *VADODARIYA, K. V.

MAIN COTTON RESEARCH STATION NAVSARI AGRICULTURAL UNIVERSITY SURAT – 395 007, GUJARAT, INDIA

*EMAIL: kvvadodaria@yahoo.co.in

ABSTRACT

A line x tester crossing programme was taken up with four lines and eight testers with a view to obtain best heterotic crosses for seed cotton yield and its attributing traits. Heterosis over better parent and two standard checks were estimated for seed cotton yield and its contributing characters in 32 cross combinations. The Crosses viz., GBHV 148 x H 1452 and GBHV 164 x NDIH 1938 showed highly significant positive standard heterosis as well as heterobeltiosis for seed cotton yield per plant and numbers of bolls per plant. Both the crosses also registered high per se performance with significant standard heterosis for numbers of bolls per plant, ginning percentage and lint index. The crosses exhibited the highest heterosis due to increase in numbers of sympodia per plant, boll number and boll weight which significantly associated with increase in yield and these crosses could be considered for exploitation of hybrid vigour.

KEY WORDS: G. hirsutum L., heterosis, seed cotton yield

INTRODUCTION

Cotton is a major fibre crop of global importance value. Cotton, the king of fibre, is one of the momentous and an important cash crop exercising profound influence on economics and social affairs of the world. Any other fibre crop cannot be compared with cotton for its fibre quality. So for this reason cotton is also known as "White Gold".

The first reference pertaining to cotton, as per the far known at present, is found in Hindu Rig-Veda hymen, which was written during 15th century B.C. The use of cotton during 800 B.C can be noted from the records of Manu's "*Dharmashastra*". The Sanskrit word *karpasa*-i was used in these literatures that are connected to *kapas* of

modern Hindustan. The technological and agricultural term in English, Cotton, which describes cultivated species of *Gossypium* comes from the Arabic word qutum or kutum.

ISSN: 2277-9663

India is pioneer in commercialization of heterosis in cotton. A noticeable heterosis is reported in cotton by many workers (Khadi et al., 1992). Even though heterosis occurs in cotton, it has not been utilized widely as compared to maize and castor due difficulties in producing cheap commercial F₁ hybrid seed production. For better exploitation of heterosis in cotton, development of simple and economically viable hybrid seed production technique is Commercial essential. exploitation heterosis is possible only when it is high and

www.arkgroup.co.in Page 740

consistent the diversified across environments for large scale hybrid seed production.

For a successful heterosis breeding programme in any crop, there are two important strategies involved (i) There must be presence of significant heterotic effect in the hybrids that can be exploited easily, and (ii) The feasibility of the hybrid seed production on commercial base. Cotton is an often cross-pollinated crop in which hand emasculation and hand pollination technique is feasible to produce hybrid seeds. Heterosis is useful to decide the direction of future breeding programme and to identify the cross combinations which are promising in conventional breeding programme. In this study, several cross combinations exhibited conspicuous heterobeltiosis and standard heterosis for different traits.

MATERIALS AND METHODS

Eight diverse females (NH-630, H-1452, BS-30, NH-635, NDIH-1938, BS-79, GJHV-358 and H-1353) and four good testers (GBHV-148, GBHV-164, GBHV-177 and G.Cot.16) were used to generate thirty two cross combinations by using line x tester mating design. The resultant thirty two inter specific hybrids were tested against two checks viz., G.Cot.Hy-8 and G.Cot.Hy-12 for the estimation of heterosis. Complete set of treatments were grown in RBD with three replications. One row of each hybrid and parents were sown at spacing of 120 x 45 cm during 2011-12 at Regional Cotton Research Station, Navsari Agricultural University, Bharuch. Five plants were chosen from each row to record observations on seed cotton yield and its seven contributing traits (Table 1). Heterosis was estimated over better parent as per the standard procedure of Meredith and Bridge (1972) and useful heterosis suggested by Rai (1978).

RESULTS AND DISCUSSION

The analysis of variance for parents and their hybrids (Table 1) revealed significant differences among genotypes, parents, crosses, parents vs. crosses for all the eight traits suggesting the presence of considerable genetic diversity with respect to various studied traits. Variance due to females vs. males which reflected hybrid genetic makeup was also highly significant for lint yield per plant, seed index and lint index.

Heterosis over better parent and two standard checks for eight characters was presented in Table 2. For number of sympodia per plant, 7, 9 and 8 crosses significant showed and positive heterobeltiosis, standard heterosis over G.Cot.Hy-8 and G.Cot.Hy-12 with range of -20.00 to 55.38 per cent, -15.79 to 41.75 per cent and -17.24 to 39.21 per cent, respectively. The cross combination GBHV 164 x NH 630 recorded the highest heterobeltiosis (55.38%), standard heterosis over G.Cot.Hy-8 (41.75%) and G.Cot.Hy-12 (39.21 %) Similar findings for this trait were reported by Bhatade and Rajeswar (1994), Singh et al. (1995), Patil et al. (2009), Jyotiba et al. (2010) and Sekhar babu et al. (2011).

In cotton, the numbers of bolls per plant is the most important yield component which is mostly positively associated with seed cotton yield. Three hybrids out of 32, exhibited significant positive heterotic effect over their respective better parent. The cross GBHV 148 x H 1452 was associated with maximum heterosis over their better parent (72.08 %). The numbers of hybrids exhibited significant and positive standard heterosis over both the checks were three and four for bolls per plant. The most promising cross combinations for number of bolls per plant according to standard check (G.Cot.Hy-8) were GBHV 148 x H 1452 (48.70 %) and GBHV 177 x H 1353

(33.27%), whereas in case of second check (G.Cot.Hy-12) were GBHV 148 x H 1452 (43.85 %) and G GBHV 177 x H 1353 (28.92%). The results assemble with the workers Naik and Patel (1982), Patel et al. (2000), Patil et al. (2009), Patil et al. (2010), Jyotiba et al. (2010), Sekhar Babu et al. (2011).

The extent of heterosis for boll weight ranged from -29.74 to 40.21 per cent, -8.86 to 38.70 and -16.26 to 35.51 per cent over BP, SC 1 and SC 2, respectively. The hybrid G.Cot.16 x GJHV 358 depicted the highest significant positive heterobeltiosis (40.21 %). Out of thirty two hybrids, 20 and 22 hybrids noticed with positive significant standard heterosis over SC 1 and SC 2, respectively. The highest value observed for the cross GBHV 177 x BS 30 of 38.70 and 41.92 per cent, over SC 1 and SC 2, respectively for boll weight. Almost identical results have been reported by Patel et al. (2000), Jyotiba et al. (2010) and Sekhar Babu et al. (2011).

The extent of heterosis for seed cotton yield per plant ranged from -10.28 to 26.63 per cent, -6.99 to 31.27 per cent and -9.91 to 29.74 per cent over BP, SC 1 and SC 2, respectively. Among thirty two hybrids, four, seven and six hybrids showed significant and positive heterosis over BP, SC 1 and SC 2, respectively. Cross combinations, GBHV 148 x H 1452, G.Cot.16 x H 1353 and GBHV 164 x NDIH 1938 were the top ranking heterotic crosses positive significant economic heterosis for seed cotton yield per plant. The results reported in the present investigation are in agreement with the results of Naik and Patel (1982), Duhoon et al. (1983), Rajan et al. (2000), Patil et al. (2009), Jyotiba et al. (2010) and Patil et al. (2010) and Sekhar Babu et al. (2011) for seed cotton yield per plant.

While considering lint yield per plant, four, nine and nine crosses showed

significant and positive heterobeltiosis, standard heterosis over SC 1 and SC 2 with range of -17.59 to 46.52 per cent, -11.82 to 57.86 per cent and -8.91 to 56.07 per cent, respectively. The highest, significant and positive heterobeltiosis (46.52 %), standard heterosis over SC 1 (57.86 %) and SC 2 (56.07 %) was reported by GBHV 148 x H 1452. The study of Tuteja et al. (2003) and Sekhar Babu et al. (2011) reported similar results for lint yield per plant.

The heterotic expression for ginning percentage ranged from -14.13 to 13.12 per cent over better parent, whereas ranged from -2.11 to 18.11 per cent and -4.12 to 15.67 per cent over SC 1 and SC 2, respectively. Among thirty two hybrids, GBHV 177 x BS 79 (13.12 %) and GBHV 177 x NH 635 (18.11 %) and (15.67%) showed the highest, significant and positive heterobeltiosis and standard heterosis over both the checks, respectively for ginning percentage. Patel et al. (2000), Patil et al. (2009), Jyotiba et al. (2010) and Sekhar Babu et al. (2011) also reported varying magnitude of heterosis for this character.

The cross combination G.Cot.16 x GJHV 358 (39.25%) exhibited the highest, significant and positive heterosis over better parent for seed index. The hybrid GBHV 177 x BS 30 depicted the highest significant positive standard heterosis of 46.77 and 45.99 per cent over SC 1 and SC 2, respectively. The extent of heterosis for seed index ranged from -26.51 to 39.25 per cent, -1.61 to 46.77 and -2.14 to 45.99 per cent over BP, SC 1 and SC 2, respectively. Among thirty two hybrids, 13, 27 and 27 hybrids showed significant and positive heterosis over better parent, standard heterosis over SC 1 and SC 2, respectively. For lint index, heterobeltiosis, standard heterosis over SC 1 and SC 2 ranged from -28.44 (GBHV 148 x NH 635) to 38.04 per cent (G.Cot.16 X NDIH 1938), -1.26 (GBHV 148 x H 1353) to 75.00 per cent

(GBHV 148 x H 1452) and -1.70 (GBHV 148 x H 1353) to 74.20 per cent (GBHV 148 x H 1452), respectively. Almost identical results have been reported by Bhatade and Rajeswar (1994), Patel et al. (2000), Jyotiba et al. (2010) and Sekhar Babu et al. (2011) for seed index and lint index.

CONCLUSION

GBHV 148 x H 1452 and GBHV 164 x NDIH 1938 appeared to be more promising heterotic cross combinations for seed cotton yield per plant and they might be due to increase in sympodia per plant, lint yield per plant, boll number and boll weight. These crosses could be checked for stability performance before exploitation of hybrid vigour for commercial cultivation.

REFERENCES

- Bhatade, S. S. and Rajeswar, S. R. (1994). Heterobeltiosis and standard heterosis for yield and quality characters in some G. hirsutum L. crosses. Madras Agric. J., 81(1): 34-
- Duhoon, S. S.; Basu, A. K. and Sahni, V. M. (1983). Heterosis and combining ability studies in cotton (G. hirsutum L.). J. Indian Soc. Cotton Improv., 8: 19-27.
- Jyotiba, S. S.; Patil, B. R.; Deshpande, S. K.; Patil, S. S. and Patil, R. S. (2010). Heterosis studies in GMS based diploid cotton. Elect. J. Pl. Breed., 1: 685-688.
- Khadi, B. M.; Janagoudar, B. S.; Katageri, I. S. and Eshanna, M. R. (1992). Desi hybrids cotton for rainfed conditions. J. Cotton Res. Dev., 6: 105-110.
- Meredith, W. R. and Bridge, R. R. (1972). Heterosis and gene action in cotton Gossypium hirsutum L. Crop Sci., **12**: 304-310.
- Naik, M. R. and Patel, C. T. (1982). Heterosis in yield and its components in Asiatic cotton. J. Indian Soc. Cotton Improv., 7:11-15.

- Patel, J. C.; Patel, U. G.; Patel, D. H.; Patel, R. H. and Patel, M. V. (2000). Performance of intra hirsutum and Asiatic cotton hybrids based on male sterility system. *Indian J. Genet.*, **60**: 111-115.
- Patil, S. A.; Naik, M. R.; Pathak, V. D. and Kumar, V. (2010). Heterosis for yield and fibre properties in upland cotton G. hirsutum L. National Conference on "Paradigm Shift in Cotton Research and Cotton Cultivation" held at MCRS, NAU, Surat from October 19-21, 2010.
- Patil, S. S.; Gavit, A. F.; Magar, N. M. and Pawar, V. Y. 2009. Heterosis in hybrids of Gossypium arboreum cotton. J. Cotton Res. Dev., 23: 209-212.
- Rajan, S. G. A.; Khandasamy, G.; Vanniarajan, C. and Rajaravindran, G. (2000). Study of heterosis in American cotton. Indian J. Agric. Res., **34**(3): 156-159.
- B. (1978). Heterosis Breeding. Agro Rai. Biological Publications. New Delhi.
- Sekhar Babu, G.; Khadi, B. M.; Mogali, S.; Patil, R. S.; Katageri, I. S.; Nadaf, H. L. and Patil, B. C. (2011). Study of heterosis in genetic male sterility based diploid cotton for yield, yield component and fibre quality characters. Karnataka J. Agric. Sci., **24**(2); 118-124.
- Singh, H.; Singh, S. and Om Prakash. (1995). Measurement of heterosis for yield and its component characters in American cotton. J. Cotton Res. *Dev.*, **9** (1): 1-6.
- Tuteja, O. P; Luthra, P. and Kumar, S. (2003). Combining ability analysis in upland cotton (G. hirsutum L.) for yield and its components. Indian Journal Agric. Sci., 73(12): 671-675.

www.arkgroup.co.in **Page 743**

Table 1: Analysis of variance for different characters in upland cotton

Source of variation	d.f.	Number of Sympodia Per Plant	Number of Bolls Per Plant	Boll Weight (g)	Seed Cotton Yield Per Plant (g)	Lint Yield Per Plant (g)	Ginning Percentage (%)	Seed Index (g)	Lint Index (g)
Replications	2	0.22	0.31	0.02	0.46	0.29	0.07	0.01	0.29
Genotypes	38	19.94**	92.99**	0.55**	343.74**	65.80**	8.72	2.02**	65.80**
Parents (p)	10	7.22*	115.62**	0.76**	167.15	29.51*	6.13	2.07**	29.51*
Females	3	7.33	319.56	1.86**	155.07	17.65	1.35	0.98**	17.65
Males	6	7.76*	44.68**	0.40**	175.75	29.09*	7.02	2.45**	29.09*
Females vs. males	1	3.12	0.36	0.01	143.22	67.97*	14.22	2.73**	67.97*
Parents vs. Crosses	1	44.96**	15.55	2.82**	1852.20**	308.98**	12.21	8.00**	308.98**
Crosses (c)	27	23.65**	87.46**	0.41**	357.74**	70.83**	9.53	1.81**	70.83**
Females effect	3	7.95	66.70	0.06	389.80	34.19	10.76	0.40	34.19
Males effect	6	14.87	137.74	0.54	420.21	99.87	11.45	1.87	99.87
Females x Males effects	18	28.81**	73.67**	0.42**	332.33**	66.39**	8.72	1.99**	66.39**
Error	76	2.97	11.68	0.05	110.56	13.71	1.23	0.07	13.71

^{*, **} Significant at 5 % and 1 % levels, respectively.

Page 744 www.arkgroup.co.in

Table 2: Per cent heterosis over better parent and two standard checks (H₁ & H₂) for different characters in upland cotton

Characters	Per se	Range			Best Cross							Number of Significant Crosses in Desirable Direction		
		H (%)	SH ₁ (%)	SH ₂ (%)		H (%)		SH ₁ (%)		SH ₂ (%)	H (%)	SH ₁ (%)	SH ₂ (%)	
Number of	16.00	20.00	15 70	17.24	GBHV 164 X NH 630	55.38	GBHV 164 X NH 630	41.75	GBHV 164 X NH 630	39.31				
Sympodi a Per	to to	to	-20.00 to to 55.38 41.75	-17.24 to 39.31	G.Cot.16 X NDIH 1938	30.51	G.Cot.16 X NDIH 1938	35.09	G.Cot.16 X NDIH 1938	32.76	7	9	8	
Plant	21.00	1.00 55.38			G.Cot.16 X NH 630	25.42	GBHV 164 X NH 635	0.10	GBHV 164 X NH 635	31.03				
Number	24.03	4.03 -30.65 to to 6.59 72.08	to	-21.17 to 43.85	GBHV 148 X H 1452	72.08	GBHV 148 X H 1452	48.70	GBHV 148 X H 1452	43.85		3	4	
of Bolls					GBHV 177 X H 1353	X H 1353 45.23	GBHV 177 X H 1353	33.27	GBHV 177 X H 1353	28.92	3			
					GBHV 177 X H 1452	16.89	G.Cot.16 X NH 630	19.43	GBHV 164 X H 1353	19.74				
	2.39 to 4.15	-29.74 to 40.21	-8.86 to 38.70	-16.26 to 41.92	G.Cot.16 X GJHV 358	40.21	GBHV 177 X BS 30	38.70	GBHV 177 X BS 30	41.92	11	20	22	
Boll Weight (g)					GBHV 164 X GJHV 358	33.33	GBHV 164 X H 1452	12.86	GBHV 148 X H 1452	35.51				
					GBHV 177 X BS 30	27.66	GBHV 177 X NDIH 1938	25.30	GBHV 177 X NDIH 1938	28.21				
Seed Cotton Yield Per Plant (g)	99.67 to 125.03		to to	-9.91 to 29.74	GBHV 148 X H 1452	26.33	GBHV 148 X H 1452	31.27	GBHV 148 X H 1452	29.74	4	7	6	
		o to			G.Cot.16 X H1353	26.05	GBHV 164 X NDIH 1938	24.54	GBHV 164 X NDIH 1938	23.09				
					GBHV 164 X NDIH 1938	20.63	G.Cot.16 X H1353	24.19	G.Cot.16 X H1353	22.74				

^{*, **} Significant at 5 % and 1 % levels, respectively

Table 2: Contd....

Table 2: Contd....

Chara- cters	Per se	Range			Best Cross							Number of Significant Crosses in Desirable Direction		
		H (%)	SH ₁ (%)	SH ₂ (%)		H (%)		SH ₁ (%)		SH ₂ (%)	H (%)	SH ₁ (%)	SH ₂ (%)	
Lint	Lint Yield Per Plant (g) 32.59 to 44.26	17.59	-11.82 to 57.86	-8.91 to 56.07	GBHV 148 X H 1452	46.52	GBHV 148 X H 1452	57.86	GBHV 148 X H 1452	56.07	4	9	9	
Yield Per					GBHV 164 X NDIH 1938	30.79	GBHV 164 X NDIH 1938	37.59	GBHV 164 X NDIH 1938	36.04				
(g)					G.Cot.16 X NDIH 1938	23.98	GBHV 177 X NH 635	34.92	GBHV 177 X NH 635	33.39				
Ginning Percent	32.00 to 35.37	14.13	-2.11 to 18.11	-4.12 to 15.67	GBHV 177 X BS 79	13.12	GBHV 177 X NH 635	18.11	GBHV 177 X NH 635	15.67	5	21	17	
					GBHV 177 X H 1452	10.95	GBHV 177 X H 1452	16.21	G.Cot.16 X NH 630	13.20				
age (%)	33.37				GBHV 148 X H 1452	9.15	GBHV 148 X H 1452	14.32	G.Cot.16 X NDIH 1938	13.20				
		5.00 to 26.51 8.30 to	to to 46.77	-2.14 to 45.99	G.Cot.16 X GJHV 358	39.25	GBHV 177 X BS 30	46.77	GBHV 177 X BS 30	45.99	13	27	27	
Seed Index	6.00 to 8.30				G.Cot.16 X BS 30	36.93	G.Cot.16 X GJHV 358	39.25	G.Cot.16 X GJHV 358	38.50				
(g)		39.25			GBHV 164 X BS 30	32.73	G.Cot.16 X BS 30	36.56	GBHV 177 X NH 635	36.42				
Lint Index (g)	2.96 to 4.66		to to 75.00	to	G.Cot.16 X NDIH 1938	38.04	GBHV 148 X H 1452	75.00	GBHV 148 X H 1452	74.20	16	26	25	
					GBHV 164 X BS 30	34.85	G.Cot.16 X NDIH 1938	59.47	GBHV 177 X NH 635	74.18				
					GBHV 177 X BS 30	29.31	GBHV 177 X NH 630	56.62	G.Cot.16 X NDIH 1938	58.75				

^{*, **} Significant at 5 % and 1 % levels, respectively

[MS received: December 21, 2017]

[MS accepted : December 27, 2017]

ISSN: 2277-9663

www.arkgroup.co.in Page 746