STUDIES ON ZOOPLANKTON DIVERSITY OF LOWER MANAIR RESERVOIR, KARIMNAGAR, (A.P.), INIDA.

THIRUPATHAIAH. M, SAMATHA, CH. AND *SAMMAIAH, CH.

ENVIRONMENTAL BIOLOGY LAB DEPARTMENT OF ZOOLOGY KAKATIYA UNIVERSITY, WARANGAL, ANDHRA PRADESH, INDIA

*E-mail: sammaiah_ch@yahoo.com; meduthirupathi@gmail.com

ABSTRACT

The study of zooplankton diversity of lower Manair reservoir was carried out from September 2009 to August 2011. During the study period, samples were collected monthly at four different stations. A total of 34 species of zooplankton belonging to 16 species of rotifera, 8 species of cladocera, 6 species of copepoda, 2 species of ostrocoda and 2 species of protozoa were identified. Rotifera was the most diverse zooplankton group in this reservoir. The K. tropica (10±3.00), B. caudatus (4.91±1.21) and B. angularis (4.33±1.48) were dominant than the other species of rotifera, while Alona pulchella (19.23±2.18) and Alona intermedia (12.61±1.87) among Cladocera, and Cyclops sp. (12.5±2.72) and Mesocyclops sp. (6.91±1.25) among Copepoda were the most abundance species.

KEY WORDS: - Lower Manair reservoir, zooplankton diversity

INTRODUCTION

Zooplankton organisms are identified as important component of aquatic ecosystem (Okogwu, 2010). They are one of the most important biotic components influencing all the functional aspects of an aquatic ecosystem, such as food chains, food webs, energy flow and cycling of mater (Dadhick and Sexena, 1999; Sinha and Islam, 2002). Anene (2003) also reported that they occupies intermediate position in the food web and thereby, play an important role in the integration of energy budget of the aquatic ecosystem.

Zooplankton diversity and density refers to variety within community (Jalilzadeh *et al.*, 2008) and their diversity is one of the most important ecological parameters, as these are the intermediate link between phytoplankton and fish. They are also useful

indicator of future fisheries health because they are a food source of organism at higher tropic levels (Davies *et al.*, 2008). The biomass abundance and species diversity of zooplanktons are used to determine the conditions of aquatic environment (MBO, 2007).

distribution of Zooplankton The community depends on a complex of factors such as change of climatic conditions physical and chemical parameters and vegetation cover (Rocha et al., 1999; Neves et al., 2003). Zooplankton plays an integral role and may serve as bio-indicator and it is well suited food for understanding water pollution status (Beaugrand et al., 2000; Li et al., 2000; Pinto-Coelho et al., 2005; Davies et al., 2008; Contreras et al., 2009,). Zooplankton has been a subject of study in India and several workers [Michael (1968a), Sinha and Islam (2002),

Pulle and Khan (2003), Pandit *et al.* (2007), Lokhande and Shembekar (2009); Thirupathaiah *et al.* (2011); Kehayias *et al.* (2013); Nimbalkar *et al.* (2013); Shah *et al.* (2013); Sharma *et al.* (2013a); Sharma *et al.* (2013b)] worked on it. The main objective of the paper was to determine the studies on zooplankton diversity of lower Manair reservoir water, Karimnagar.

MATERILAS AND METHODS

The study was undertaken to evaluate zooplankton diversity in lower Manair reservoir, of Karimnagar District, Andhra Pradesh, India. It lies between North Latitude 18°.38' and East Longitude 79°.12'. The total area of the reservoir is about 8,103 hectares and maximum depth is 21.9 m. The climatic condition of the study area was hot summer and cool winter. The present study was conducted at periodic temperature range with a minimum of 29°C and a maximum of 38°C. The region got much rainfall from south west monsoon and maximum from June to September during the monsoon. In October and November, the region received rainfall from the north east monsoon. The average rainfall of this study area is 100.9 mm. The water of this reservoir is used for drinking, agriculture and supports fish culture.

Zooplanktons were collected monthly from four different sites of the lower Mannair reservoir during the study period (Sep-2009 to Aug-2011) (Figure 1). Samplings were made between 9.00 am to 11.30 am. Each sample was collected by filtering 20 liters of water through plankton net made up of nylon blotting silk plankton net (No. 25 mesh size 50µ). Filtrate was stored in 20 ml plastic bottles and 5 per cent formalin was added for preservation. sample The concentrated samples, thus, obtained were fixed with 4 per cent neutralized formalin, Lugol's solution (Lugol, 1829) and a few drops of glycerin, allowed to settle for overnight. Finally the quantitative analysis for the presence and dominance was done by using a Sedgwickrafter cell method (Serfling, 1949). One ml of sample was transferred to Sedgwick-Rafter cell with a pipette; identification and enumeration were done by a Wild-stereo microscope. All the planktons present in cell were counted. The mean of five estimates was then calculated for each component occurring in the total count. The systematic identification of planktons were made by using standard keys of Edmondson (1959), Pennak (1968), Adoni, (1985), Michael and Sharma (1988), Dhanapathi (2000) and Altaff (2004).

RESULTS AND DISCUSSION

In the present investigation, 34 species of zooplanktons belonging to 25 genera, 15 families and 5 groups were recorded in lower Manair reservoir. Out of 34 species, 16 species were of Rotifera, 8 species of Cladocera, 6 species of Copepoda and 2 species each of Ostracoda and Protozoa (Table 1). The percentage of different groups of zooplanktons presented in Figure 2 indicated that Rotifera, Cladocera, Copepoda, Ostracoda and Protozoa noted 34, 26, 23, 14 and 3 per cent, respectively, during September 2009 to August 2010, whereas it was 36, 28, 25, 10 and 1 per cent during September 2010 to August 2011, in that order (Figure 3).

Monthly abundance of different groups zooplanktons were recorded during September 2009 to August 2010 are presented in Figure 4. The maximum abundance of Rotifera recorded in January 2010 and minimum represented in August 2010. High of Cladocera abundance recorded September 2009 and low in May 2010. In case of Copepoda, high abundance recorded in May 2010 and low in October 2009, but not recorded any Copepods in September 2009. High abundance of Ostracoda recorded in June 2010 and minimum December 2009. The maximum abundance of Protozoa recorded in August 2010 and minimum January 2010, but not recorded any Protozoa in July 2010. Similarly, monthly abundance of different groups of zooplanktons were recorded during

September 2010 to August 2011 are presented in Figure 5. The maximum abundance of Rotifera recorded in January 2011 and minimum in August 2011. High abundance of Cladocera recorded in September 2010 and minimum in April 2011. In case of Copepoda, high abundance recorded in April 2011 and minimum in October 2010, but not recorded any Copepods in September 2010. High abundance of Ostracoda recorded September 2010 and minimum January 2011. Maximum abundance of Protozoa species recorded in June 2011 and minimum in November 2010, but not recorded any Protozoa in July 2011.

The annual variations of mean zooplankton during September 2009 to August 2010 are presented in Table 2. Annual mean variation of Rotifera showed that K. tropica had the highest mean value (6.50±1.39) and lowest value was noted in Synchaeta sp. (0.66±0.28). Annual variation of cladocera showed that Alona pulchella had highest mean value (19.23 ± 2.18) and lowest by M. brachiata (2.76 ± 0.31) . The results of copepoda showed that Cyclops sp. had the highest mean value (12.5±2.72) and lowest by Nauplius larva (1.33±0.46). The Ostracoda annual mean variation noted highest in Stenocypris sp. (10.66±2.24) followed by Cypris sp (8.33 ± 1.42) . The protozoa results showed that Verticella campanula had highest (2.25 ± 0.42) value followed mean Paramecium caudatum (1.5 ± 0.28) .

The annual mean values of different species of zooplankton during September 2010 to August 2011 are presented in Table 2. Annual mean variation of Rotifera was noted highest in K. tropica (10±3.00) and lowest by Synchaeta sp. (1.25±0.74). Annual variation of cladocera showed that Alona pulchella possessed the highest mean value (10.83±2.32), and lowest by Bosmia sp. (1.66±0.43). The copepoda results showed that Cyclops sp. had the highest mean value (12.33±2.17) and lowest in Nauplius larva (1.83±0.51). Annual variation of Ostracoda showed that *Cypris sp.* exhibited the highest mean value (8.91±1.08) followed by *Stenocypris* sp (4.91±1.10). The protozoa annual mean variation was highest in *Paramecium caudatum* (2.00±0.34) followed by *Verticella campanula* (1.50±0.23).

The Brachionus sp. and Keratella sp. were dominant than the other rotifera and their presence, for most of the times is throughout the study period. Diversity of rotifera was found to be influenced by different water quality and chemical factors (Chandrashekhar, 1996). In the present investigation, the rotifera population was recorded higher in winter and summer months, the similar results were also reported by Sinha, 1992 and Somani and Pejavar, 2003. Singh et al. (2002) reported that higher rotifer population occurred during summer months and winter months might be dominant due to hyper tropical condition of the reservoir at high temperature and low level of water. Among cladocera, the most abundance species were Alona pulchella, Alona intermedia, and Daphania carinata (Jayabhaye, 2010). In the present study, most abundant species of copepoda were Cyclops sp. and Mesocyclops sp. Under the present investigation, copepoda were found to be maximum number during summer months and minimum number monsoon months. Similar observation was made by Chauhan (1993). Maximum ostracoda population was recorded in summer months and minimum in monsoon months in the present study. Similar results were reported by Sunkad and Patilis (2004) Mahor (2011). Protozoa recorded and maximum in summer months and winter months and minimum in monsoon months. Similar observation made by Mahor (2011) and Krishnamoorthi and Selvakumar (2012).

CONCLUSION

Zooplankton community was represented by five groups viz rotifera, cladocera, copepoda, ostrocoda and protozoa. Rotiferas were the most dominant zooplankton

group observed during the study period in lower Manair reservoir. The population of these species was maximum in summer and winter months and minimum in monsoon and therefore, water of this reservoir is suitable source for the supply of water for drinking, irrigation and fish culture. This reservoir water plays a very important role in maintaining the biodiversity of plankton.

REFERENCES

- Adoni. A. D. (1985). Work Book on Limnology. Pratibha Publishers, India. p. 216.
- Altaff, K. (2004). A Manual of Zooplankton University Grants Commission, New Delhi.
- **Techniques** Anene, A. (2003).Hydrobiology In: Eugene, N. O. and O.O. Julian, (Eds). Research Techniques Biological in and Chemical Sciences. Springfield Publishers, pp: 174-189.
- Beaugrand, G., Ibanez, F. and Reid, P. C. (2000). Spatial, Seasonal and long-term fluctuations of plankton in relation to hydroclimatic features in the English Channel, Celtic Sea and Bay of Biscay Mar. Ecol. Prog. Ser., 200: 93-102.
- Chandrashekhar (1996). Ecological studies on Saroornagar lake, Hyderabad with species reference to zooplankton communities Ph. D. Thesis, Osmania University, Hyderabad.
- Chauhan, R. (1993). Seasonal fluctuation of zooplanktons in Renuka lake Himachala Pradesh, *Utter Pradesh J. Zool.* **113** (1):17-20.
- Contreras, J. J., Sarma, S. S. S., Merino– Ibarra, M. and Nandini. S. (2009). Seasonal changes in the rotifer (Rotifera) diversity from a tropical high altitude reservoir (Valle de Bravo, Maxico). *J. Environ. Biol.*, **30**, 191-195.

- Dadhick, N. and Saxena, M. M. (1999). Zooplankton as indicators of tropical status of some desert waters near Bikner. *J. Environ. Pollut.*, **6:** 251-254.
- Davies, O. A., Tawari, C. C. and Abowei, J. F. N. (2008). Zooplankton of Elechi Creek, Niger Delta Nigeria. *Environ*. *Ecol.*, **26(4c)**: 2441-2346.
- Dhanapathi, M. V. S. S. S. (2000). Taxonomic Notes on the Rotifers from India, *IAAB*, Hyderabad, pp. 1-78.
- Edmondson, W. T. (1959). Freshwater Biology, Edward and Whipple, 2nd Edition. John Willey Sons Inc., New York. pp: 95-189.
- Jalilzadeh, A. K. K., Yamakanamardi, S. M. and Altaff, K. (2008). Abundance of zooplankton in three contrasting lake of Mysore city, Karnataka state, India, Sengupta, M. and Dalwan R. (eds.). *Proceedings of Taal* 2007: The 12th World Lake Conference: 464-469.
- Jayabhaye. U. M. (2010). Studies on zooplankton diversity of River Kayadhu, near Hingoli city, Hingoli district, Maharshtra. Samiksha aur Mulyankan (International Research Journal) 2(11-12): 47-49.
- Kehayias, G., Ramfos, A., Ntzialas, P., Ioannou, S., Bisouki, P., Kyrtzoglou, E., Gianni, A. and Zacharias, I. (2013). Zooplankton diversity and distribution in a deep and anoxic Mediterranean coastal lake. Medit. Mar. Sci., **14**(1): 179-192.
- Krishnamoorthi, A and Selvakumar, S. (2012). Seasonal fluctuation of zooplankton community in relation to certain physico-chemical parameters of Veeranam lake in Cuddalore district, Tamil Nadu. *Iner. J. Resea. Enviro. Scie. Tech.* **2**(2): 22-26.
- Li, M., Gargett, A. E. and Denman, K. (2000). What determines seasonal and

- interannual variability of phytoplankton and zooplankton in strongly estuarine systems? Application to the semi-enclosed estuary of Strait of Georgia and Juan de Fuca Strait. Estuarine Coastal Shelf Sci., **50**:467-488.
- Lokhande M. V. and Shembekar, V. S. (2009).

 Studies on phytoplankton diversity of Dhanegaon Reservoir, Dist-Osmanabad, Maharashtra (India), Sodh Samiksha aur Mulyakan International Res. J., 2(7): 35-39.
- Lugol, J. G. A. (1829). Memoire sur l'emploi de l'iode dans les maladies scrofuleuses, lu a l'Academie Royale des Sciences dans la seance du 22 June. Paris.
- Mahor R. K. (2011). Diversity and seasonal fluctuation of zooplankton in fresh water reservoir Tighra Gwalior (M.P). *International Res. J.*, **2**(19): 24-25.
- Marine Biology Organization (MBO) (2007).

 Zooplankton Retrieved Sept. 29.
 2006. Retrieved from:
 http://www.marinebiocom/oceans/zooplankton.asp.62k.
- Michael, R. G. (1968). Studies on zooplankton of a tropical fish pond. *Hydrobiologia*, **32**(1-2), 47-68.
- Michael, R. G. and Sharma, B. K. (1998). Fauna of India. Indian Cladocera (Crustacea: Brachinous: Cladocera). The Technical & General Press, India, p. 262.
- Neves, I. F., Rocha, O., Roche, K. F. and Pinto, A. A. (2003). Zooplankton community structure of two marginal lakes of the river Cuiaba (Mato Grosso, Brazil) with analysis of Rotifera and Cladocera diversity. *Braz. J. Biol.*, **63(2)**: 329-343.
- Nimbalkar, R. K., Kamtikar, V. N., Shinde, S. S. and Wadikar, M. S. (2013). Studies on zooplankton diversity in relation to water quality of Ambe Ghosale lake

- of Thane city, Maharashtra, India. *Biosci. Disc.*, **4**(1):124-127.
- Okogwu, I. O. (2010). Seasonal variations of species composition and abundance of zooplankton in Eboma lake, a Floodplain lake in Nigeria. *Rev. Bio. Trop.*, **58(1)**: 171-182.
- Pandit S. V., Vaidya, V. V. and Joshi, P. P. (2007). Studies on zooplankton diversity of Pravara river, near Sangamner city, Dist, Ahmedsagar, Maharashtra. *J. Aqua. Biol.* **22**(2): 33-38.
- Pennak. R. W. (1968). Field and experimental limnology of three Colorado maintain lakes. *Ecology*.**19**(3): 505-520.
- Pinto-Coelho, R., Pinel-Alloul, R., Methot, G. and Havens, K. E. (2005). Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions: Variation with trophic status. *Can. J. Fish Aquat. Sci.*, **62**:348-361.
- Pulle, J. S and Khan, A. M. (2003). Studies on zooplanktonic community of Isapur dam water, India. *Poll. Res.*, **22**(3), 451-455.
- Rocha. O., Matsumura-Tundisi, T., Espindola, E. L. G., Roche, K. F. and Rietzler, A. C. (1999). Ecological theory applied to reservoir zooplankton, In: Theoretical reservoir ecology and its application (Eds: J.G. Tundisi and M. Straskraba). *Internat, Inst. Ecol., Sao Carlos.* pp. 457-476.
- Serfling R. E. (1949). Quantitative estimates of plankton from small samples of Sedgwick-Rafter-Cell mounts of concentrate samples. *Trans. Amer. Microsc. Sot.* **68**: 185-199.
- Shah, J. A., Pandit, A. K. and Shah, G. M. (2013). Distribution, diversity and abundance of copepod zooplankton of Wular Lake, Kashmir Himalaya. J. Eco. Natural Environment, 5(2): 24-29.

- Sharma, K. K., Aarti Devi, Sharma, Arti and Antal, Neha (2013b). Zooplankton Diversity and Physico-Chemical Conditions of a Temple Pond in Birpur (J&K, India). *Int. Res. J. Environment Sci.* **2**(5): 25-30.
- Sharma, S., Solanki, C. M., Sharma, D. and Pir, Z. (2013a). Distribution and diversity of Zooplanktons in Madhya Pradesh, India. International J. Advanced Res., 1(1): 16-21.
- Singh, S.P., Pathak, D. and Singh, R. (2002): Hydro-biological studies of two ponds of Satna. (M.P.), India, *Eco. Evn. and Cons.*, **8**(3), 289-292.
- Sinha, B. and Islam, M. R. (2002). Seasonal variation in zooplankton population of two lentic bodies and Assam State Zoo cum Botanical garden, Guwahati,

- Assam, *Eco. Environ. Cons.*, **8**: 273-278.
- Sinha, R. K. (1992). Rotifer population of Ganga near Paba, Bihar (India) Proc. Nat. Acad. Inida B, II: 313-332.
- Somani, V. V. and M. K. Pejaver (2003). Rotifer diversity in lake Masunda, Thane (Maharashtra) *J. Aqua. Bio.* **18** (1): 23-27.
- Sunkad B. N. and Patil H. S. (2004). Water quality assessment of fort lake of Belguam (Karnataka) with special reference to zooplankton *J. Environ Biol. Vol.* **25**(1): 99-102.
- Thirupathaiah, M, Samatha, Ch. and Sammaiah, Ch. (2011). Diversity of zooplankton in freshwater lake of Kamalapur, Karimnagar district (A.P). India. *The Ecoscan*, **5**(1&2): 85-87.

Table 1: Diversity of zooplankton groups recorded in lower Manair reservoir during study period.

Groups	Family	Species	
Rotifera	Brachionidae	Brachionus angularis (Gosse, 1851)	
		Brachionus calyciflorus (Pallas, 1766)	
		Brachionus caudatus aculeatus(Haner, 1937)	
		Brachionus diersicornis(Daday, 1883)	
		Brachionus quadridentata (Hermann, 1783)	
		Keratella cochlearis (Gosse, 1851)	
		Keratella tropica (Apstein, 1907)	
	Lecanidae	Lecane lunaris (Ehrenberg, 1982)	
		Lacane monostyla (Daday, 1897)	
	Gastropodidae	Gastropus minor (Rousselet 1892)	
	Asplanchnidae	Ascomorpha ovalis (Begendal, 1892)	
		Asplanchna sp	
	Synchaetidae	Synchaeta sp	
		Polyarthra vulgaris (Carlin, 1943)	
	Philodinidae	Philodina citrine (Ehrenberg,)	
	Testudinellidae	Filinia longiseta (Ehrenberg)	
Cladocera	Daphnidae	Daphania pulex	
		Daphania carinata	
		Monia micrua (Kurz)	
		Monia brachiata	
	Bosminidae	Bosmina. sp	
	Chydoridae	Alona pulchella (King)	
		Alona intermedia (Sars)	
		Alonella. sp	
Copepoda	Diaptomidae	Cyclopoid copepodite	
		Diaptomus pallidus	
		Neodiaptomus sp	
	Cyclopidae	Cyclops sp	
		Mesocyclops sp	
		Nauplius larva	
Ostracoda	Cyprididae	Cypris sp	
		Stenocypris sp	
Protozoa	Parameciidae	Paramecium caudatum	
	Vorticellidae	Vorticella campanula	

Table 2: Annual mean variance of zooplankton species from lower Manair reservoir

Species/Group	Year 1	Year 2
	Sep. 2009 to Aug. 2010 (Mean±SE)	Sep. 2010 to Aug. 2011 (Mean±SE)
Rotifera	/	/
1. Ascomorpha ovalis	2.5 ± 0.72	2.16 ± 0.81
2. Asplanchna sp	1.91±0.63	1.50±0.60
3. B. angularis	3.25±1.28	4.33±1.48
4. B. calyciflorus	1.66±0.37	3.5±0.90
5. B. caudatus	5.33±1.45	4.91±1.21
6. B. diersicornis	2.83±1.00	2.16±0.67
7. B. quadridentata	3.00±0.79	3.5±0.99
8. Filinia longiseta	2.25±0.60	2.25±0.50
9. Gastropus minor	3.75±1.18	2.83±0.93
10. K. cochlearis	1.83±0.54	2.58±0.71
11. K. tropica	6.50±1.39	10±3.00
12. L. lunaris	1.91 ±0.56	2.16±0.64
13. L. monostyla	2.75±0.93	2.58±0.86
14. Philodina sp	3.16±0.96	2.25±0.64
15. Polyarthra vulgaris	2.66±0.73	2.16±0.45
16. Synchaeta sp	0.66±0.28	1.25±0.74
Cladocera		
1. A. intermedia	12.61±1.87	5.58±1.69
2. Alona pulchella	19.23±2.18	10.83±2.32
3. Alonella sp	2.87±0.83	2.33±0.60
4. Bosmia sp	2.92±0.35	1.66±0.43
5. D. carinata	8.46±1.37	7.16±1.89
6. Daphania puoex	9.38±1.24	5.66±1.08
7. M. brachiata	2.76±0.31	2.50±0.45
8. Monia micrua	4.76±1.08	3.25±1.14
Copepoda		
1. Cyclopoid copepodite	3.91±0.99	4.16±0.95
2. Cyclops sp	12.5±2.72	12.33±2.17
3. Diaptomus pallidus	3.66±0.84	4.91±1.15
4. Mesocyclops sp	5.83±1.67	6.91±1.25
5. Nauplius larva	1.33±0.46	1.83±0.51
6. Neodiaptomus sp	4.33±1.26	3.91±1.00
Ostrocoda		
1. Cypris sp	8.33±1.42	8.91±1.08
2. Stenocypris sp	10.66±2.24	4.91±1.10
Protozoa	<u> </u>	•
1. Paramecium caudatum	1.5±0.28	2.00±0.34
2. Verticella campanula	2.25±0.42	1.50±0.23

Karimnagar, Andhra Pradesh, India Karimnagar
Station-3

Lower Station-2

Ganne Station-4

Station-1

Fig. 1: Map of the study area showing the different sampling stations

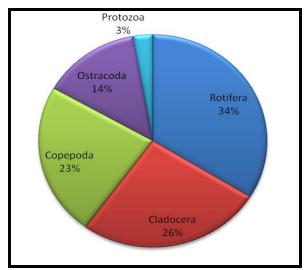


Fig. 2:Species composition of zooplankton and relative percentage of each group (September 2009 to August 2010)

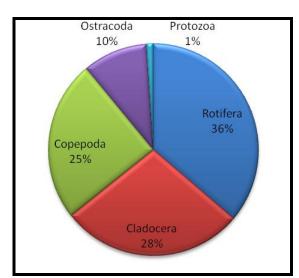


Fig. 3:Species composition of zooplankton and relative percentage of each group (September 2010 to August 2011)

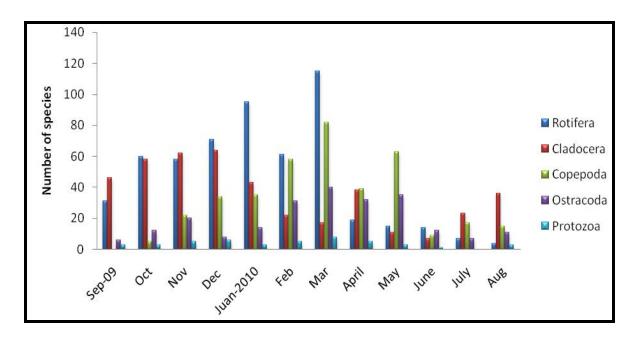


Fig. 4: Monthly abundance of different groups of zooplankton (September-2009 to August-2010)

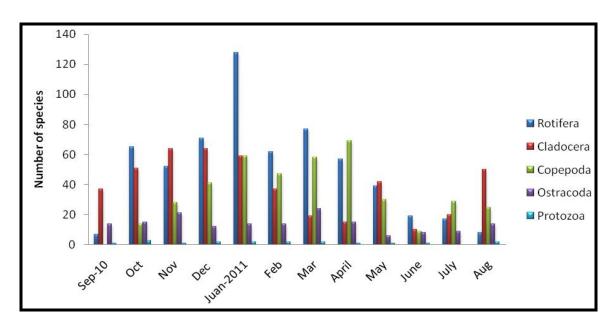


Fig. 5: Monthly abundance of different groups of zooplankton (September-2010 to August-2011)

[MS received: July 07, 2013] [MS accepted: August 09,2013]