GENETIC ARCHITECTURE OF SEED COTTON YIELD AND ITS COMPONENT TRAITS IN COTTON (Gossypium hirsutum L.)

*VALU, M. G.; MADARIYA, R. B.; KHANPARA, M. D.; RIBADIYA, K. H.; VEKARIA, R. K. AND PANSURIYA, A. G.

COTTON RESEARCH STATION JUNAGADH AGRICULTURAL UNIVERSITY JUNAGADH - 362 001, GUJARAT, INDIA

*E-mail: mgvalu@jau.in

ABSTRACT

The present investigation was undertaken with a view to generate genetic information on gene effects for seed cotton yield and its component traits in cotton (Gossypium hirsutum L.). The experimental materials consisted of twelve generations, namely P_1 , P_2 , F_1 , F_2 , B_1 , B_2 , B_{11} , B_{12} , B_{21} , B_{22} , B_{15} and B_{25} of two crosses of cotton viz., G. Cot 12 x GTHV 95/145 (cross 1) and 76IH20 x GJHV 460 (cross 2). Special scaling tests such as X and Y were significant either in cross 1 or cross 2 for all the four traits besides significance of other tests showing presence of epistasis. The $\chi^2_{(2)}$ value at six degrees of freedom were significant in all the traits in both crosses supported the presence of higher order epistasis. The $\chi^2_{(3)}$ value at two degrees of freedom was significant for all the four traits in both the crosses indicating the presence of higher order epistasis and/or linkage.

KEY WORDS: Cotton, digenic and trigenic gene effects

INTRODUCTION

Cotton (Gossypium hirsutum L.) is an important fibre crop of global significance and is grown in tropical and subtropical regions of more than eighty countries. Cotton is primarily cultivated for its lint or fibre, in other words, lint is the main product of cotton crop. Cotton enjoys a predominant status among all the cash crops in the country, being the material principal for flourishing textile industries. The predominant species cultivated India in Gossypium hirsutum, which cover about 90 per cent of the total area. In India, cotton is planted in about 11.70 million hectares of land ranking first and occupies second position in production with 29.00 million bales of 480 lb among all cotton producing countries in the world with average productivity of 540 kg/ha (Anonymous, 2013). The yield of seed cotton is a complex and polygenic character. The information on gene action for seed cotton yield is very essential for deciding the effective selection method in segregating generations. The additive dominance gene effects may have great value on the improvement of seed cotton yield. The information on epistatic gene effect is also important for the yield improvement in cotton. Hence, the present investigation was undertaken to study the genetic architecture of seed cotton yield and its component traits in cotton.

MATERIALS AND METHODS

experimental materials consisted of twelve generations, namely P₁, P₂, F₁, F₂, B₁, B₂, B₁₁, B₁₂, B₂₁, B₂₂, B₁s and B₂s of two crosses of cotton viz., G. Cot 12 x GTHV 95/145 (cross 1) and 76IH20 x GJHV 460 (cross 2). Experiment was laid-out in Compact Family Block Design with three replications during Kharif 2013 at Cotton Research Station, Junagadh Agricultural University, Junagadh. Each replication was divided into two compact blocks each consists of single cross and blocks were consisted of twelve plots comprised of twelve basic generations of each cross. The crosses were assigned to each block and twelve generations of a cross were randomly allotted to individual plot within the block. The plots of various generations contained different number of rows i.e., parents and F_1 in single row; B_1 and B_2 in two rows and F_2 , B_{1S} , B_{11} , B_{12} , B_{2S} , B_{21} and B_{22} in three rows. Each row was of 6.3 m in length with 120 cm and 45 cm inter and intra row spacing, respectively. All the recommended agronomical practices plant protection and necessary measures were followed timely to raise good crop of cotton. The observations were recorded on seed cotton yield per plant, number of sympodia per plant, number of bolls per plant and boll weight on five randomly selected plants in each replication for P₁, P₂ and F_1 ; ten plants for B_1 and B_2 and twenty plants for F₂, B₁₁, B₁₂, B₂₁, B₂₂, B₁s and B2s. To decide the adequacy of three, six and ten parameter model, simple scaling tests given by Hayman and Mather (1955), Hill (1966) and Van Der Veen (1959) were employed. Joint scaling test of Cavalli (1952) was applied to test adequacy of three, six and ten-parameter models. Whenever, this simple additive-dominance model failed to explain the variation in

generation means, six and ten parameter models using weighted least square method were used to estimate main, digenic and trigenic effects.

RESULTS AND DISCUSSION

The data were initially subjected to simple scaling tests A, B, C and D. Significant estimates of any one or more of these tests indicated the presence of digenic interactions. Further, simple scaling tests B_{11} , B_{12} , B_{21} , B_{22} , $B_{1}s$ and $B_{2}s$ given by Hill (1966) and X and Y given by Van Der Veen (1959) were also computed. The significant estimate of the test(s) given by Hill (1966) showed the contribution of particular generation to higher order epistasis which indirectly indicating the presence of epistasis. Any of the Veen's tests Van Der deviate significantly from zero indicates the presence of trigenic or higher order epistasis. The results of simple scaling tests were further confirmed by joint scaling test (Cavalli, 1952), which effectively combines the whole set of simple scaling tests. Thus, it offers a more general, convenient, adoptable informative approach estimating gene effects and also for testing adequacy of additivedominance model. The $\chi 2_{(1)}$ test at nine degrees of freedom; $\chi^2_{(2)}$ at six degrees of freedom and $\chi^2_{(3)}$ at two degrees of freedom were applied to test the fitness of three parameter model, six-parameter model and ten-parameter model, respectively. The ten parameter model was used to estimate higher order epistasis (Hill, 1966). To draw inference on adequacy of ten parameter model, chi-square test $\chi^2_{(3)}$ at two degrees of freedom was applied. The degree of freedom for χ^2 was computed by subtracting number of parameters considered under respective model from the number of generations. The results are presented in Table 1 and 2.

Out of all the scaling tests, only A, B₁₂, B₂₁, B₂₂, X and Y in cross 1 and B, D, B₁₁, B₁₂, B_{1S} and special scaling test Y in cross 2 were significant showing the presence of epistasis for seed cotton vield per plant, while the scaling tests B, C, B₁₂, B₂₁, B₂₂, B_{2S} and X in cross 2 and all the scaling tests except B, B_{1S} and X in cross 1 were significant showing the presence of digenic and trigenic gene action for number of sympodia per plant. For number of bolls per plant, all the scaling tests except B₂₂ and B_{1s} in cross 1 and scaling tests A, B, D, B₁₂, B₂₁ and Y in cross 2 were significant showing the presence of epistasis. On the other hand, the scaling tests A, B, C, B₂₂, B_{2s} and Y in cross 1 and A, B, D, B₁₂, B₂₂, B_{1s}, B_{2S}, X and Y in cross 2 were significant showing presence of digenic and trigenic gene interaction for boll weight. All the three parameters i.e. 'm', additive [d] and dominance [h] of three parameter model were significant in cross 1 and cross 2 for all the characters under study except additive [d] dominance [h] in cross and dominance [h] in cross 2 for number of sympodia per plant. The $X^{2}_{(1)}$ values with nine degrees of freedom of joint scaling test was significant in all the characters indicating the failure of additive-dominance model, which indirectly pointed out the presence of epistasis. Cockerham (1959) postulated that the epistatic gene action common in the inheritance quantitative traits and there is no sound biological reason why this type of gene action should be less common for these traits.

When the simple additivedominance model failed to explain the variation among generation means, a six parameter model involving three digenic interactions ([i], [j] and [l]) based on weighted least square technique proposed by Hill (1966) was tested, which had provision of testing the adequacy of model with six degrees of freedom besides being utilizing means of all the twelve generations. Hence, the present study was planned to execute with means of twelve generations and model of Hill (1966) was tested in which six degrees of freedom left for testing adequacy of six parameter model of Hill (1966). According to the six parameter model of Hill. parameters 'm', [d] and digenic [l] in cross 1 and all the parameters in cross 2 were significant for seed cotton yield per plant, while the parameters 'm', [h] and [1] in cross 1 and 'm', [h], [j] and [1] in cross 2 were significant for number of sympodia per plant. Likewise, for number of bolls per plant, all the estimate except [d] in cross 1 and all the estimate in cross 2 were significant, while all the estimate of gene effects except [i] in cross 1 and [j] in cross 1 and cross 2 were significant for boll weight. The $\chi^2_{(2)}$ value at six degrees of freedom were significant in all four traits in both the crosses indicating the presence of higher order epistasis.

In ten parameter model, all the parameters were found significant in cross 1 and 'm' and dominance x dominance x dominance [z] were significant in cross 2 for seed cotton yield per plant. For number of sympodia per plant, 'm', additive [d], additive x dominance [j] and additive x additive x additive [w] in cross 1 and 'm', dominance [h], additive x additive [i], dominance x dominance additive x additive x dominance [x], additive x dominance x dominance [v] and dominance x dominance dominance [z] in cross 2 were The 'm', dominance x significant. dominance [1] and dominance x dominance x dominance [z] were

found significant in both the crosses for number of bolls per plant. additionally additive [d], dominance [h], additive x dominance [i], additive x additive x additive [w], additive x additive x dominance [x] and additive x dominance x dominance [y] were significant in cross 1. For boll weight, the gene effects 'm', additive x dominance x dominance [y] and dominance x dominance x [z] were found significant in both the crosses, additionally dominance [h], additive x additive [i], dominance x dominance [1] and additive x additive x dominance [x] were significant in cross 1, while additive x dominance [j] was significant in cross 2. The $\chi^2_{(3)}$ value at two degrees of freedom was significant in all the traits under study for both the crosses indicating the presence of higher order epistasis and/or linkage.

These findings were further confirmed from the investigations done by several researchers, who worked on different kind of gene effects mostly up to digenic interactions and there is no report on trigenic interactions in cotton so far. However, few reports are available in different crops Bhapkar and D'cruz (1967) and Singh (2012) in castor and Sharma et al. (2002) in wheat. The opposite signs of either two or all the three gene effects viz., dominance [h], dominance x dominance [1] and dominance dominance x dominance [z] suggested the presence of duplicate type of epistasis. In present study, duplicate epistasis was observed in both the crosses for all the four traits under investigation. **Duplicate** type epistasis was also reported by Mehetre et al. (2003) for number of sympodia per plant and boll weight; by Haleem et al. (2010) for number of open bolls, seed cotton yield and boll weight, and by Kannan et al. (2013) for number of sympodia per plant, number of bolls, boll weight and single plant yield.

CONCLUSION

From the foregoing discussions, it could be concluded that seed cotton yield per plant and its component traits recorded in two crosses were governed by additive, dominance and digenic and/or trigenic epistasis gene effects along with duplicate type of gene action. When additive as well as non-additive gene effects are involved, a breeding scheme efficient in exploiting both types of gene effects should be employed. Biparental mating could be followed which would facilitate exploitation of both additive and nonadditive gene effects simultaneously for genetic improvement of seed cotton yield and its component traits in cotton.

REFERENCES

- Anonymous (2013). All India Coordinated Cotton Improvement Project. Annual Report, CICR, Regional station, Coimbatore.
- Bhapkar, D. G. and D'Cruz, R. (1967). Inheritance of oil content in *Ricinus communis*. *Indian J. Genet.*, **27**: 152-153.
- Cavalli, L. L. (1952). An Analysis of Linkage in Quantitative Inheritance. In "Quantitative Inheritance". Ed. E. C. R. Reeve and C. H. Waddington, HMSO, London. pp.135-144.
- Cockerham, C. C. (1959). Partition of hereditary variance for various genetic models, *Genet.*, **44**: 1141-1148.
- Haleem, S. H. M. A; Metwali, E. M. R and Felail, A. M. M. (2010). Genetic analysis of yield and its component in some egyptian cotton (*Gossypium barbadense* L.) varieties. *World J. Agric. Sci.*, **6**(5): 615-621.

- Hayman, B.I. and Mather, K. (1955).

 The description of genetic interactions in continuous variation. *Biometrics*, **11**: 69-82
- Hill, J. (1966). Recurrent backcrossing in the study of quantitative inheritance. *Heredity*, **21:**85-120.
- Kannan, S.; Ravikesavan, R. and Govindaraj, M. (2013). Genetic analysis for quantitative and quality characters in three single crosses of upland cotton. *Nat. Sci. Biol.*, **5**(4): 450-453.
- Mehetre, S. S.; Shinde, S. K. and Shinde, G. C. (2003). Genetic analysis for seed cotton yield and its components in cotton. *J. Maharashtra Agric. Uni.*, **28**(1): 46-50.

- Sharma, S. N.; Sain, R. S. and Sharma, R.K. (2002). Genetic control of quantitative traits in *durum* wheat under normal and late sowing environments. *SABRAO J. Breed. Genet.*, **34**(1): 35-43.
- Singh, A. P. (2012). Gene systems for seed yield and its component traits in castor (*Ricinus communis* L.). Ph. D. (Agri.), Thesis (unpublished) submitted to Junagadh Agricultural University, Junagadh.
- Van Der Veen, J. H. (1959). Test of non-allelic interaction and linkage for quantitative character in generation derived from two diploid pure lines. *Genetica*, **30**: 201-232.

Table 1: Scaling tests and estimation of gene effects for seed cotton yield per plant and number of sympodia per plant in two crosses of cotton

Scaling	S	Number of Sympodia Per Plant											
Tests	G.Cot 12 x			76IH20 x			G.Cot 12 x			76IH	76IH20 x		
/Gene	GTHV 95/145			GJHV 460			GTHV 95/145 (cross			GJHV 460			
Effects	(cross 1)			(cro		1)			(cross 2)				
A	-23.87*	±	9.01	-8.20	±	8.59	-2.00*	±	0.85	-0.60	±	0.88	
В	3.93	±	11.32	-34.47**	±	7.22	-1.47	±	0.83	-4.53**	±	1.04	
С	19.27	±	18.27	3.40	±	18.92	-8.07**	±	1.57	-5.40**	±	1.69	
D	19.60	±	10.92	23.03*	±	10.21	-2.30**	±	0.85	-0.13	±	0.92	
B ₁₁	27.13	±	20.60	-32.07*	±	13.35	9.93**	±	1.79	1.87	±	1.88	
B ₁₂	123.73**	±	16.16	72.40**	±	17.90	8.93**	±	1.69	8.60**	±	1.84	
\mathbf{B}_{21}	58.13**	±	20.21	8.47	±	16.66	12.33**	±	1.75	9.40**	±	1.77	
\mathbf{B}_{22}	-36.00*	±	15.90	-26.93	±	18.12	3.53*	±	1.66	11.47**	±	1.77	
B _{1S}	19.60	±	37.22	-85.13**	±	28.47	3.00	±	3.32	5.07	±	3.37	
$\mathbf{B}_{\mathbf{2S}}$	42.27	±	28.03	-49.13	±	34.04	9.53**	±	3.25	26.93**	±	3.46	
X	32.18**	±	8.41	14.70	±	7.45	0.75	±	0.74	-2.60**	±	0.74	
Y	47.68**	±	8.85	34.97**	±	7.99	1.95*	±	0.80	1.17	±	0.82	
Three Parameter Model													
m	111.15**	±	1.37	105.82**	±	1.24	17.73**	±	0.17	17.38**	±	0.18	
(d)	13.68**	±	1.38	-13.12**	±	1.23	-0.01	±	0.16	0.88**	±	0.17	
(h)	25.52**	±	2.76	32.65**	±	2.68	0.48	±	0.32	-0.07	±	0.35	
χ ² ₍₁₎ (9 df)	f) 82.28**			62.57**			92.11**			96.80**			
Six Parameter Model													
m	130.56**	±	9.41	140.46**	±	8.69	19.79**	±	0.84	17.82**	±	0.85	
(d)	13.97**	±	1.57	-16.06**	±	1.42	0.21	±	0.22	0.28	±	0.24	
(h)	-39.19	±	25.40	-54.70*	±	22.51	-8.58**	±	2.27	-5.60*	±	2.35	
(i)	-18.19	±	9.46	-35.32**	±	8.74	-1.30	±	0.85	0.64	±	0.86	
(j)	1.15	±	8.65	30.52**	±	7.40	-1.33	±	0.85	3.30**	±	0.93	
(l)	49.54**	±	17.67	55.12**	±	15.55	8.12**	±	1.62	6.28**	±	1.72	
$\chi^{2}_{(2)}$ (6 df)	73.76**			28.03**			51.35**			46.02**			
Ten Parai	meter Model												
m	90.05**	±	27.75	101.89**	±	26.94	20.18**	±	2.37	11.16**	±	2.39	
(d)	63.52**	±	20.51	-10.19	±	18.88	5.12**	±	1.81	2.65	±	1.79	
(h)	693.76**	±	145.08	174.87	±	142.33	-9.19	±	12.19	30.24*	±	12.47	
(i)	111.41**	±	27.77	1.99	±	26.95	-1.90	±	2.37	7.32**	±	2.40	
(j)	-190.63**	±	57.59	-17.79	±	50.99	-13.47**	±	5.00	5.41	±	4.97	
(l)	-1154.72**	±	222.72	-384.28	±	217.24	3.73	±	18.75	-48.42*	±	19.23	
(w)	-48.65*	±	20.48	-5.65	±	18.85	-4.94**	±	1.81	-2.89	±	1.78	
(x)	-352.78**	±	82.23	-61.17	±	82.87	4.60	±	6.82	-20.10**	±	7.09	
(y)	222.92**	±	56.71	75.50	±	50.01	8.52	±	4.91	-11.98*	±	4.88	
(z)	607.45**	±	106.75	252.89*	±	103.15	4.88	±	9.08	25.69**	±	9.33	
$\chi^2_{(3)}$ (2 df)	6.86*			6.29*			36.56**			13.71**			
Type of	Duplicate			Duplicate			Duplicate			Duplicate			
Epistasis	k-k- C1												

^{*, **} Significant at 5 and 1 per cent levels, respectively

Table 2: Scaling tests and estimation of gene effects for number of bolls per plant and boll weight in two crosses of cotton

Scaling	Nur	Boll Weight									
Tests	G. Cot 12 x		76IH		G. Cot 12		76IH20 x				
/Gene	95/145 (cre	GJHV)	95/145 (cross 1)			GJHV 460				
Effects	`	(cros		, ,			(cross 2)				
A	-17.20** ±	2.23	-4.60*	±	2.07	0.64**	±	0.17	-0.39**	±	0.11
В	-10.00** ±	2.88	-10.20**	±	2.15	0.83**	±	0.19	-0.53**	±	0.12
С	-11.60* ±	5.02	-3.80	±	4.77	0.94**	±	0.25	-0.28	±	0.25
D	7.80** ±	2.76	5.50*	±	2.63	-0.27	±	0.15	0.32*	±	0.14
B ₁₁	32.47** ±	3.83	-6.73	±	3.56	0.17	±	0.27	-0.09	±	0.22
B ₁₂	22.07** ±	5.81	23.33**	±	4.51	0.23	±	0.33	1.25**	±	0.25
\mathbf{B}_{21}	34.80** ±	4.99	9.87*	±	4.37	0.37	±	0.37	0.37	±	0.20
\mathbf{B}_{22}	-6.87 ±	4.75	4.47	±	4.98	-1.03*	±	0.39	-0.77**	±	0.26
$\mathbf{B_{1S}}$	8.13 ±	10.05	-12.40	±	7.83	0.32	±	0.54	-1.41**	±	0.51
$\mathbf{B}_{\mathbf{2S}}$	30.93** ±	8.33	1.87	±	9.26	-1.31*	±	0.54	-1.19**	±	0.44
X	6.65** ±	2.09	0.57	±	2.00	0.27	±	0.14	0.39**	±	0.10
Y	7.82** ±	2.32	8.87**	±	2.09	0.36*	±	0.16	0.62**	±	0.11
Three Parameter Model											
M	30.80** ±	0.38	30.66**	±	0.37	3.44**	±	0.03	3.30**	±	0.02
(d)	-2.21** ±	0.37	-3.68**	±	0.37	0.39**	±	0.03	-0.11**	±	0.02
(h)	6.82** ±		10.14**	±	0.69	0.48**	±	0.06	0.41**	±	0.04
$\chi^2_{(1)}$ (9 df)	136.68*	57.55**			65.11**			88.16**			
Six Parameter Model											
M	41.04** ±		39.57**	±	2.34	3.29**	±	0.15	4.04**	±	0.13
(d)	-0.11 ±		-4.64**	±	0.45	0.40**	±	0.03	-0.12**	±	0.02
(h)	-31.14** ±		-17.04**	±	6.04	1.43**	±	0.43	-1.57**	±	0.33
(i)	-8.09** ±		-8.19**	±	2.35	0.08	±	0.15	-0.74**	±	0.13
(j)	-10.80** ±		8.08**	±	2.09	-0.25	±	0.15	0.19	±	0.11
(1)	32.70** ±		19.55**	±	4.07	-1.01**	±	0.33	1.33**	±	0.23
$\chi^{2}_{(2)}$ (6 df)	45.15**	21.87**			42.28**			51.10**			
Ten Parame									T		
m	22.52** ±		26.74**	±	7.04	2.21**	±	0.40	3.77**	±	0.38
(d)	27.46** ±		-4.32	<u>±</u>	5.07	0.49	±	0.33	0.33	±	0.28
(h)	76.07* ±		57.59	±	36.88	7.19**	<u>±</u>	2.04	0.18	<u>±</u>	1.96
(i)	10.34 ±		4.17	<u>±</u>	7.05	1.17**	±	0.39	-0.49	±	0.38
(j)	-87.26** ±		5.81	<u>±</u>	13.71	-1.54	±	0.95	-1.79*	±	0.76
(l)	-146.15* ±		-115.73*	±	56.21	-10.08**	±	3.20	-2.86	±	2.97
(w)	-27.52** ±		-0.27	±	5.07	-0.06	±	0.32	-0.42	±	0.28
(x)	-51.74* ±		-25.51	±	21.31	-2.86**	<u>±</u>	1.07	0.38	<u>±</u>	1.12
(y)	66.37** ±		1.82	±	13.37	2.25*	<u>±</u>	0.95	2.56**	<u>±</u>	0.71
(z)	91.08** ±	28.05	74.29**	±	26.66	4.44**	±	1.61	2.78*	±	1.40
$\chi^2_{(3)} (2 df)$	6.65*	12.07**			24.90**			11.54**			
Type of	Duplica	Duplicate			Duplicate			Duplicate			
Epistasis	nificant at 5 and										

^{*, **} Significant at 5 and 1 per cent levels, respectively

[MS received: June 16, 2015] [MS accepted: June 22, 2015]