PLANT GROWTH PROMOTING EFFECT OF Trichoderma ON GROUNDNUT

ANSHUL SHARMA, JADEJA, K. B., KATARIA, G. K., MANHAS, ANAMIKA AND DHAKAD, JITENDRA KUMAR

DEPARTMENT OF PLANT PATHOLOGY COLLEGE OF AGRICULTURE JUNAGADH AGRICULTURAL UNIVERSITY JUNAGADH – 362 001, GUJARAT, INDIA

EMAIL: anshul254sharma@gmail.com

ABSTRACT

The study was conducted to evaluate the growth promoting influence of Trichoderma on groundnut, a major crop of Saurashtra region. The genus Trichoderma is an important asexual form of Ascomycota under Deuteromycotina belongs to a class of free living fungi beneficial to plants that are common in the soil and root ecosystems. Among various species of Trichoderma, T. harzianum and T. viride arisen as the most prominent species of the genus for crop diseases management. Application of 'Sawaj Trichoderma' (T. harzianum), the biocontrol product of Department of Plant Pathology, Junagadh Agriculturral University by the groundnut growers for the management of stem rot disease has been proved most successful since last 5-6 years. Treatment of Sawaj Trichoderma not only managed the disease but also increased pod yield in groundnut resulted in additional economic gain. These observations triggered to study the characters of Trichoderma beyond biocontrol agent in groundnut and this study was design to find out the growth promoting effect of two Trichoderma spp. on groundnut. It has been speculated that the seed application of T. harzianum + T. viride increased seed germination, chlorophyll content, shoot and root length and dry weight of leaves, shoot and root in groundnut. The other treatments of bioagents also influenced positively on said characters, although highest results were obtained in the seed treatment T. harzianum + T. viride. The positive effects on the different characters also reflected in the yield related characters of groundnut. The seed treatment of T. harzianum + T. viride either alone or in combinations performed well to increase number and weight of pods as well as test weight of kernels in groundnut. From this results, seed treatment of T. harzianum or T. viride or T. harzianum + T. viride are advocated in groundnut for better growth and higher outcome of pods.

KEY WORDS: Groundnut, Trichoderma harzianum, Trichoderma viride

INTRODUCTION

Groundnut is an annual legume crop and a major oilseed of tropical and subtropical countries, which is also known as 'peanut', 'earthnut', 'monkey nut' and 'goobers'. It is the

13th most important food crop and 4th most important oilseed crop of the world. It is commercially popular due to its superior edible oil quality and protein in the meal.

Trichoderma is an important genus of asexual ascomycota belongs Deuteromycotina, Hyphomycetes, order: Monilliales and family: Moniliaceae, belongs toa class of free living fungi beneficial to plants that are common in the soil and root ecosystems. number Large Trichoderma spp. are reported regarding for the management of plant diseases/pathogens by their various mechanisms includes competition, antibiosis. mycoparasitism, hyphal interactions, and enzyme secretion. Antifungal ability of two species of Trichoderma, T. harzianuma and T. viride arisen as the most prominent species of the genus. Along with the diverse antifungal mechanisms Trichoderma, the ability to promote plant growth, to increase plant height, leaf area and dry weight, stronger root growth and nutrient uptake, secretion of plant growth regulatory factors and faster germination are reported in various crops. It has been reported in the literature that positive effect of Trichoderma on plant growth is independent ability and equally remarkable and significant as antifungal ability because development has been observed in the absence of any detectable disease and in sterile soil. Therefore, now it is considered that the direct effects of this fungus on plant growth development are crucially important agricultural uses and understanding the role of Trichoderma in natural and managed ecosystems (Windham et al., 1986; Chang et al., 1986; Baker, 1988; Ousley et al., 1993; Inbar et al., 1994; Ousley et al., 1994; Gupta and Sharma, 1995; Koch, 2001; Celar and Valic, 2005).

MATERIALS AND METHODS

The present investigation was undertaken to study the plant growth promoting effect of *Trichoderma* on

groundnut. The study was conducted during kharif 2013 at the Research Farm, Department of Plant Pathology, Junagadh Agricultural University. Junagadh. Geographically Junagadh is situated at 21.50 °N latitude and 70 °E longitude with an altitude of 60 meters above the mean sea level. The soil of experimental site was medium black. alluvial in origin and poor in organic matter. The climate of the area represents tropical condition semi-arid nature. The experimental materials consisted of semi-spreading type cultivar GG 20 of groundnut. The experimental trial was conducted in randomized block design replicated thrice. T. harzianum and T. viride (Sorghum isolates) was obtained from the Pathology laboratory, Department of Plant Pathology, JAU, Junagadh. Mass culture of T. harzianum and T. viride was prepared on sorghum grains were boiled up to two whistle in a pressure cooker. The mixture was cooled up to room temperature, filled in an autoclave at 15 psi for 30 minutes. After cooling at room temperature, the flasks were inoculated with mycelium discs of culture of T. harzianum and T. viride and incubated in a BOD incubator at 28 ± 1°c for 15 Seed treatment of groundnut involves seed bio-priming with fungal bioagent viz. T. harzianum, T. viride (10 g / kg of seeds) alone and in combination in between and with bacterial bioagent viz. Pseudomonas fluorescence (10 ml/kg of seed) as prescribed in Table 1 and Table 2. The observations recorded for various characters are showed in Table 1 and Table 2.

RESULTS AND DISCUSSION

Character wise effect of different treatments are presented and discussed in Table 1 and Table 2.

Germination

The mean data pertaining to the effect of different treatments germination of groundnut recorded at 30 DAS are presented in Table 1. The results indicated that in all the treatments the germination was control. Maximum higher than germination in groundnut was 86 per cent in the treatment of T. harzianum + T. viride, which is 6.5 per cent higher than control (80.7%). This followed by the treatment of T. harzianum + P. fluorescence (84.6%) and T. harzianum (84.5 %). In present investigation, it has been speculated that the seed application of T. harzianum and T. viride increased seed germination in groundnut. This finding was supported by Mukhtar (2008), in which he demonstrated that seed treatment of T. harzianum produced highest germination index in okra. On the same line, Asaduzzaman et al. (2010) in chili, Kaveh et al. (2011) in muskmelon and Sheilla et al. (2011) in maize, also reported better germination with seed treatment of T. harzianum. Seed and soil application Trichoderma spp and P. fluorescence increased germination in chickpea (Dubey et al., 2012) and in black pepper (Shivakumar et al., 2012). They application reported that of *T*. harzianum, *T*. viride and Р. fluorescence as seed treatment or as soil application helps to produce metabolites such as phytohormones, antibiotics and siderophores which further improves the imbibitions of water inside the seeds and activate the processes metabolic required establishment of heathy and better seed germination.

Chlorophyll content

The data of chlorophyll content was measured by chlorophyll content meter (CCM 200 plus) for three times at 30 days interval and mean is

presented in Table 1. The results indicated that the maximum chlorophyll content 15.4 mg/cm² was recorded in the treatment of T. harzianum + T. viride, which is 13.2 per cent higher than control (13.6 mg/cm^2). This was followed by the T. harzianum (15.3 mg/cm²) and T. viride + P. fluorescence (15.2 mg/cm²). Soil application of *Trichoderma* is reported to increase in chlorophyll content in cucumber (Chaur-Tsuen and Chien-Yih, 2002). Samia and Salwa (2012) also noticed increase in chlorophyll in maize with seed as well as soil application of T. harzianum. Recently, Entesari et al. (2014) reported 206 per cent increase in chlorophyll content in soyabean by biopriming of harzianum. The most probably reason for increase chlorophyll is that Trichoderma spp. helps to increase in the uptake of nutrients like Zn, Mn, Fe etc. from the soil. These nutrients play important role to increase chlorophyll contenT. It is worth mentioning that these parameters are closely related to the photosynthesis processes in plants. From this background, it is logical to appreciate its contribution in improving chlorophyll contenT. Although nutrient analysis was not carried out in the present investigation but in number of research findings, uptake of nutrient and chlorophyll are correlated positively content (Farooq et al. 2006; Cakmak, 2008).

Number of leaves

The mean data about the effect of different treatments on number of leaves per plant were influenced by different treatments are presented in Table 1. A perusal of data revealed that the maximum number of leaves (176.6) was observed under the treatment of *T. harzianum* + *T. viride*, which is 9.9 per cent higher than control (160.6). This was followed by the treatments of *T. harzianum* (169.4)

and T. harzianum + P. fluorescence (168.4).

Number of branches

The mean regarding the effect of different treatments on number of branches was influenced by different treatments are presented in Table 1.The resulted data revealed that the maximum number of branches were recorded in the treatment harzianum+T. viride (7.6), which is 16.9 per cent higher than control (6.5). This was closely followed by the treatments, viz. T. harzianum + P. fluorescence (7.3) and T. harzianum (7.2).

Shoot length

The mean data from the Table 1 observed that the maximum shoot length 33.5 cm was observed in the treatment of T. harzianum + T. viride, which is 18.3 per cent higher than control (28.3 cm). This was followed by treatments T. harzianum (32.2 cm), T. viride + P. fluorescence (31.0 cm).

Root length

The data about the effect of different treatments on root length are presented in Table 1. The highest mean root length (13.6 cm) was recorded in the treatment of T. hazrianum + T. viride. which is 25.9 per cent higher than control (10.8)cm). This was followed by the treatments T. harzianum (12.5 cm) and T. harzianum + P. fluorescence (12.5 cm).

In the present investigation, it has been found that seed treatment of T. harzianum and T. viride also increased shoot and root length in groundnut. These findings are in agreement with the reports Bjorkman et al. (1998) in sweet corn; Omar et al. (2007) in tomato and Shanmugaiah et al. (2009) in cotton, where they found that seed treatment of T. viride increases shoot and root length in the respective crop. Soil application of Trichoderma is also

reported to increase shoot and root length in cucumber (Chaur-Tsuen and Chien-Yih, 2002); in groundnut (Ganesan *et al.*, 2007) and in chili (Bhuvaneswari *et al.*, 2014). The results of present investigation also supporting the literature coated earlier (Chang *et al.*, 1986; Windham *et al.*, 1986, Yedidia *et al.*, 2001; Adams *et al.*, 2007).

Days to 50 per cent flowering

The mean data regarding the effect of different treatments on days to 50 per cent flowering are presented in the Table 1. There was little difference among the treatments. It ranged 25.8 days (P. from *fluorescence*) days 28.6 (T.to harzianum + T. viride). In control treatment, days to 50 per cent flowering was reported at 26.7 days.

Number of pods

The data pertaining to the effect of different treatments on number of pods per plant was influenced by different treatments are presented in Table 1. The mean data showed that the maximum number of pods (18.7) was recorded in the treatment of T. harzianum + T. viride, which is 28.9 per cent higher than control (14.5). This was followed by the treatments of hazrianum fluorescence (17.9), T. harzianum (17.6) and T. viride + P. fluorescence(17.4) with marginal difference. These findings are supported by results of Snjezana et al. (2013). They have reported yield increased in cabbage and red beet by the soil application of T. viride. In the present study, seed treatment of bioagents increased many physiological and subsequent biochemical traits resulted in higher number of pods in groundnut.

Shelling per cent

The data about shelling percentage are presented in Table 1. There was little difference among the

treatments except control. Highest shelling percentage (74.6 %) recorded in the treatment harzianum + T. viride, which is 4.1 per higher than control (71.6 %). This was closely followed by the viride treatments of *T*. + fluorescence (73.6%), T. harzianum (73.2%)and T. viride (73.0 %), respectively.

Test weight

The data regarding 100 kernels weight of groundnut are presented in Table 1. Scrutiny of the data showed that variations in test weight due to different treatments were found narrow among seed treatments. Highest test weight (50.5 g) was observed in the treatment of T. hazrianum + T. viride, 7.4 which is cent higher than control. This was closely followed by T. harzianum + P. fluorescence (50.0 g) and T. harzianum (49.9 g). The lowest mean test weight (47.0 g) was recorded in control treatment. These findings supported by results of Snjezana et al. (2013). They have reported yield increased in cabbage and red beet by the soil application of *T. viride*. In the present study, seed treatment of bioagents increased many physiological and subsequent biochemical traits resulted in higher number of pods as well as test weight in groundnut.

Oil content

The data pertaining to oil content in groundnut kernel is outlined in Table 1. A perusal of data revealed that there was no much difference among the treatments in oil conten T. It ranged between 49.9 per cent (T. hazianum) to 50.3 per cent (T. harzianum + T. viride). Control treatment yielded 50 per cent oil content.

Dry weight of leaves

The results about the effect of different treatments on dry weight of leaves are presented in Table 2. Maximum dry weight of groundnut leaves was recovered in the treatment of T. harzianum + T. viride (31.6 g), which is 22.9 per cent higher than control (25.7 g). This was followed by the treatments of T. harzianum + P. fluorescence (29.4 g) and T. harzianum (29.2 g), respectively.

Dry weight of pods

The data about the effect of diff erent treatments on dry weight of pods are presented in Table 2. Scrutiny of data showed that variations in dry weight of pods were less than 2.0 g in different seed treatments. Maximum mean dry weight of pods (21.5 g) was recorded in the treatment of T. harzianum + T. viride, which is 14.3 per cent higher than control (18.8 g). This was followed by the treatments of T. harzianum (20.8 g), T. harzianum + P. fluorescence (19.9 g) and T. viride + P. fluorescence (19.8)and g) viride (19.7 g), respectively.

Dry weight of shoot

The data about the effect of different treatments on dry weight of shoot are presented in Table 2. The data showed variation in dry weight of shoot due to different treatments. Maximum mean dry weight of shoot (10.9 g/plant) was observed in the treatment of of T. harzianum + T. viride, which is 32.9 per cent higher than than control (8.2 g/plant). This was followed by T. harzianum (9.7 g/plant) and T. harzianum + P. fluorescence (9.6 g/plant).

Dry weight of root

The mean observations regarding the effect of different treatments on dry weight of groundnut root at harvest are presented in Table 2. Scrutiny of the data showed the

variation in dry weight of root due to different treatments. Maximum mean dry weight of root (2.5 g/plant was observed in in the treatment of T. harzianum + T. viride, which is 56.2 cent higher than per control (1.6 g/plant). This was followed by T. harzianum + fluorescence Р. (2.3 g/plant) and T. viride (2.2 g/plant), respectively.

In the present investigation, application of T. harzianum and T. viride increased dry weight of leaves, shoot and root in groundnut. These findings are consonance with the research of Rabeendran et al. (2000). They reported increase in dry weight of shoot and root in cabbage and lettuce by root dipping of seedlings in suspension of Т. virens before transplanting under glasshouse condition. Shanmugaiah et al. (2009) also observed highest dry weight of shoot and root in cotton by seed treatment of T. viride. Entesari et al. (2014) have reported increase in dry weight of shoot and root in soyabean by bio-priming of various isolates of T. harzianum and T. virens as well as P. fluorescence. Logically increase in shoot and root length will also find with their higher dry weight and the biochemical reasons are discussed further. The higher number of leaves in inoculated plants may be attributed to the positive effect of *Trichoderma* and phosphate solubilizing bacteria i.e. Pseudomonas spp. on cotton. soyabean and tomato (Domsch and Gams 1972; Kloepper et al., 1980; Baker 1988; Lynch et al., 1991), which increase availability of nutrients like macro (N, P, K) as well as micronutrient (Mo, Zn and Mn) to the roots of cotton, soyabean and tomato and which helps in turns to increase in photosynthetic activity of plants that later enhances the vegetative growth thus the number of leaves per plant,

number of branches, plant height and root length .

CONCLUSION

From the present investigation, it can be seen that seed application of T. harzianum + T. viride increased seed germination, chlorophyll content, shoot and root length and dry weight of leaves, shoot and root in groundnut. The other treatments of bioagents also positively influenced on said characters, although highest results were obtained in the seed treatment T. harzianum + T. viride. The positive effects on the different characters also reflected in the yield related characters of groundnut. The seed treatment of T. harzianum + T. viride either alone or in combinations performed well increase number and weight of pods as well as test weight of kernels in groundnut. From this results, seed treatment of T. harzianum or T. viride or T. harzianum + T. viride are advocated in groundnut for better growth and higher outcome of pods.

REFERENCES

- Adams, P.; De-Leij, FAAM and Lvnch. J. M. (2007).Trichoderma harzianum Rifai 1295-22 mediates promotion of crack willow (Salix fragilis) saplings in both clean and metalcontaminated soil. **FEMS** Microbiol. Ecol.. 54: 306-313.
- Asaduzzaman, M.; Alam, M. J. and Islam, M. M. (2010). Effect of *Trichoderma* on seed germination and seedling parameters of chili. *J. Sci. Foundation*, **8**(1&2): 141-150.
- Baker, R. (1988). *Trichoderma* spp. as plant growth stimulants. *CRC Crit. Rev. Biotechnol.*, **7**: 97-106.
- Bhuvaneswari, G.; Reetha, S.; Sivaranjani, R. and Ramakrishanan, K. (2014).

- Effect of AM fungi and *Trichoderma* species as stimulations of growth and morphological character of chili (*Capsicum annum* L.). *Int. J. Curr. Microbiol. Appl. Sci.*, **3**(3): 447-455.
- Bjorkman, T.; Blanchard, L. M. and H arman, G. E. (1998). Growth e nhancement of sweet corn by *Trichoderma* harzianum. J. Am. Soc. Hortic . Sci., **123**: 35–40.
- Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification. *Plant Soil*, **30**: 1-17.
- Celar, F. and Valic, N. (2005). Effects of *Trichoderma* spp. and *Gliocladium roseum* culture filtrates on seed germination of vegetables and maize. *J. Pl. Dis.*, **112**: 343-350.
- Chang, Y. C.; Baker, R.; Kleifeld, O. and Chet, I. (1986). Increased growth of plants in the presence of the biological control agents *Trichoderma harzianum*. *J. Pl. Dis.*, **70**: 145-148.
- Chaur-Tsuen, L. and Chien-Yih, L. (2002). Screening strains of *Trichoderma* spp. for plant growth enhancement in Taiwan. *Plant Patho. Bulletin.*, **11**:215-220.
- Domsch, K. H. and Gams, W. (1972). Fungi in agricultural soils. *Afr. J. Agric. Sci.*, **14**: 121-125.
- Dubey, S. C.; Tripathi, A. and Singh, A. (2012). Combination of soil application and seed treatment formulations of *Trichoderma* species for integrated management of wet root rot caused by *Rhizoctonia solani* in chickpea (*Cicer*

- *arietinum*). *Indian J. Agri. Sci.*, **82**(4): 356-362.
- Entesari. M.: Sharifzadeh. F.: Ahmadzadesh. and Farhangfar, M. (2014). Seed biopriming with Trichoderma species and Pseudomonas fluorescence on growth parameters, enzymes activity nutritional status soyabean. Int. J. Agron. Plant Prot., 4(4):610-619.
- Farooq, M.; Barsa, S. and Wahid, A. (2006). Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. *Plant Growth Regulators*, **49**: 285-294.
- Ganesan, S.; Ganesh, K. R. and Sekar, R. (2007). Integrated management of Stem Rot Disease (Sclerotium rolfsii) of groundnut (Arachis hypogeal L.) using rhizobium and Trichoderma harzianum (ITCC-4572). Turk. J. Agric. For., 31: 103-108.
- Gupta, O. and Sharma, N. D. (1995). Effect of fungal metabolites on seed germination and root length of black gram (*Phaseolus mungo* L.). *Legume Res.*, **18**: 64–66.
- Inbar, J.; Abramsky, M.; Cohen, D. and Chet, I. (1994). Plant growth enhancement and disease control by *Trichoderma harzianum* in vegetable seedlings growth under commercial conditions. *Europ. J. Pl. Pathol.*, **100**: 337-346
- Kaveh, H.; Jartoodeh, S. V.; Aruee H. and Mazhabi, M. (2011). Would *Trichoderma* affect seed germination and seedling quality of two muskmelon

- cultivars, khatooni and qasri and increase their transplanting success. *J. Biol. Environ. Sci.*, **5**(15): 169-175.
- Kloepper, J. W.; Schroth, M. N. and Millar, T. D. (1980). Effects of rhizosphere colonization by plant growth promoting fungal bioagent on potato plant development and yield. *Phytopatho.*, **70**: 1078-1082.
- Koch, E. (2001). Effect of biocontrol agents on plant growth in the absence of pathogens. *Phytopatho.*, **24**: 81–89.
- Lynch, J. M.; Mastouri, F. and Papavizas, G. C. (1991). Growth stimulating effect of *Trichoderma* spp. On vegetables like tomato, potato and cucumber. *Indian J. Agric. Sci.*, **115**: 119.
- Mukhtar, I. (2008). Influence of *Trichoderma* species on seed germination in okra. *Mycopatho.*, **6**(1& 2): 47-50.
- Omar, A. A. W.; Moustafa A. and Mohamed, R. M. (2007). Enhancement of plant growth through implementation of different *Trichoderma* spp.. Proceeding. Egypt, Suez Canal University of Egypt, p. 43-49.
- Ousley, M. A.; Lynch, J. M. and Whipps, J. M. (1993). Effect of plant growth promoting activity of *Trichoderma* isolates on the germination and growth of lettuce. *Plant Soil*, **17**: 85–90.
- Ousley, M. A.; Lynch, J. M. and Whipps, J. M. (1994). Potential of *Trichoderma* spp. as consistent plant growth stimulators. *Biological Fertilization of Soils*, **17**: 85-90.

- Rabeendran, N.; Moot, D. J. and Stewart, A. (2000). Inconsistent growth promotion of cabbage and lettuce from *Trichoderma* isolates. *N. Z. Plant Prot.*, **53**:143-146.
- Samia, A. A. and Salwa, M. A. (2012).

 Application of *Trichoderma harzianum* T22 as a biofertilizer supporting maize growth. *Afr. J. Biotechnol.*, **11**(35): 8672-8683.
- Shanmugaiah, V.; Balasubramanian, N.: Gomathinayagam, Monoharan. P. T. and Rajendran, A. (2009). Effect single application Trichoderma viride and pseudomonas fluorescence on on growth promotion in cotton plants. Afr. J. Agric. Res., 4(11): 1220-1225.
- Sheilla, A. O.; Jane, A. O. and James, O. O. (2011). Improved seedling emergence and growth of maize and beans by *Trichoderma harzianum*. *Trop. Subtrop. Agroecosyst.*, **13**: 65-71.
- Shivakumar, G. (2012). Evaluation of soil solarization, fungicides and biocontrol agents for the management of *Phytophthora* foot rot in black pepper nursery. *J. Mycol. Pl. Pathol.*, **42**(1): 120-123.
- Snjezana, T. P.; Ivanka, Z. and Edyta, D. (2013). Enhanced growth of cabbage and red beet by *Trichoderma viride*. *Acta Agric. Slovenica*, **10**: 87-92.
- Windham, M. T.; Elad, Y. and Baker, B. (1986). A mechanism for increased plant growth induced by *Trichoderma* spp. *Phytopatho.*, **76**: 518-521.
- Yedidia, I.; Shrivasta, A. K.; Kapulnik, Y. and Chet, I. (2001). Effect

of *Trichoderma harzianum* on microelement concentration and increased growth of

cucumber plants. *Plant Soil*, **23**: 235-242.

Table 1: Effect of different seed treatment on growth parameters of groundnut

Treatments	Germination	• Chlorophyll Content (mg/cm²)	**Number of Leaves per Plant	**Number of Branches per Plant	** Shoot Length (cm)	**Root Length (cm)	Days to 50 Per Cent Flowering	**Number of Pods per Plant	**Shelling Per Cent	**Test Weig ht (g)	**Ooil Per Cent
$T_1 = Trichoderma$ harzianum	84.5	15.3	169.4	7.2	32.2	12.5	27.8	17.6	73.2	49.9	49.9
$T_2 = Trichoderma$ viride	83.4	14.4	166.2	6.9	30.8	11.6	26.9	17.2	73.0	48.2	50.2
T ₃ = Pseudomonas fluorescence	81.5	14.9	164.5	6.8	30.1	11.3	25.8	16.5	72.5	48.8	50.0
T ₄ Trichoderma harzianum+ Trichoderma viride	86.0 (6.5%)	15.4 (13.2%)	176.6 (9.9%)	7.6 (16.9%)	33.5 (18.3%)	13.6 (25.9%)	28.6 (7.1%)	18.7 (28.9%)	74.6 (4.1%)	50.5 (7.4%)	50.3 (0.3%)
T ₅ = Trichoderma viride + Pseudomonas fluorescence	84.2	15.2	165.8	6.9	31.0	11.7	26.5	17.4	73.6	48.3	50.0
T ₆ = Trichoderma harzianum+ Pseudomonas fluorescence	84.6	14.5	168.4	7.3	30.4	12.5	27.5	17.9	72.8	50.0	50.1
T_7 = Control	80.7	13.6	160.6	6.5	28.3	10.8	26.7	14.5	71.6	47.0	50.1

^{*} Mean of 4 plots

Note: The data given in the parenthesis are per cent increase as compared to untreated control

[•] Mean 3 observations taken at 30 day interval

^{** (}Colum 3 to 15 except 7) observation at harvest

Table 2: Effect of different seed treatment on growth parameters of groundnut

Treatments	**Dry Weight of Leaves (g/plant)	**Dry Weight of Pods (g/plant)	**Dry Weight of Shoot (g/plant)	**Dry Weight of Root (g/plant)
$T_1 = Trichoderma harzianum$	29.2	20.8	9.7	2.0
T ₂ = Trichoderma viride	28.5	19.7	9.0	2.2
T ₃ = Pseudomonas fluorescence	27.4	18.2	8.7	1.8
T ₄ = Trichoderma harzianum+	31.6	21.5	10.9	2.5
Trichoderma viride	(22.9%)	(14.3%)	(32.9%)	(56.2%)
T ₅ = Trichoderma viride + Pseudomonas fluorescence	28.8	19.8	9.2	2.1
T ₆ = Trichoderma harzianum+ Pseudomonas fluorescence	29.4	19.9	9.6	2.3
T_7 = Control	25.7	18.8	8.2	1.6

^{*} Mean of 4 plots

Note: The data given in the parenthesis are per cent increase as compared to untreated control

[MS received: October 12, 2014] [MS accepted: October 27, 2014]

^{**} Observations recorded at harvest