EFFECT OF DIFFERENT PH REGIMES ON THE GROWTH AND MICRO-SCLEROTIAL FORMATION ON LEAF SPOT (Phoma tropica)

PATIL, V. A.; MEHTA, B.P.; PATEL, J. B.; WABALE, H. S. AND PATIL, S. S.

DEPTT OF PLANT PATHOLOGY N. M. COLLEGE OF AGRICULTURE NAVSARI AGRICULTURAL UNIVERSITY NAVSARI - 396 450, GUJARAT, (INDIA)

Email: vijay.patilagri@gmail.com

ABSTRACT

Leaf spot (Phoma tropica) for the first time reported in Indian bean (Lablab purpureus L.) under south Gujarat condition. Investigation was carried out in the Department of Plant Pathology, Navsari Agricultural University, Navsari to find out suitable pH regimes for physiological requirement of the pathogen. The fungus could grow at all the levels of pH tested, but growth and micro-sclerotial production were significantly better in acid medium as compared to alkaline, pH 6.0 appeared to be the optimum.

KEY WORDS: Lablab purpureus, Phoma tropica, pH.

INTRODUCTION

Indianbean is one of the important pulse-cum-vegetable crops of India. Leaf spot [Phoma tropica Schneider and Boeremal disease of Indianbean has become a major problem in recent past with a threat to successful and profitable cultivation in Gujarat. south Looking to seriousness of the disease and economic importance of the crop in this area, present investigations were undertaken to study the behaviour of the disease and to generate necessary information like to find out suitable pH regimes and which pH is useful for growth inhibition and micro-sclorotial production in vitro to know physiological requirement of pathogen.

MATERIALS AND METHODS

Physiological point of view Richards' synthetic medium was found superior and standard medium for other physiological investigation. The pH of the medium was adjusted in the range of 4.0, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5 and 8.0 using 0.1 N HCl and 0.1 N NaOH with the help of Backman's pH meter. Fifty ml of the liquid medium was filled in each 150 ml corning conical flask and flasks were plugged with non-absorbent cotton and were sterilized at 1.2 kg / cm² pressure for 20 minutes in an autoclave. The flasks were inoculated aseptically by placing 5 mm diameter culture block, cut aseptically with the help of cork borer from 7 days old pure culture of Phoma tropica. Three repetitions for recording growth and fourth repetition for recording microsclerotial count were maintained in each case. The flasks incubated at 27 +days temperature. After 15 of inoculation mycelial mats harvested on previously weighed oven dried Whatman's filter paper No. 42, giving sufficient washing with warm

Page 191

distilled water. The filter papers with mycelial mats were dried in an oven at 60°C till constant weight was obtained.

The observations were recorded to compare the dry mycelial weight. The micro-sclerotia count recorded from fourth repetition. At the end of incubation period, the whole mycelial substrate was homogenized in 50 ml distilled sterilized water with the help of Sumeet homogenizer. The homogenate was filtered through muslin cloth. A drop of suspension was low examined under power magnification (10 X) microscope. The numbers of microsclerotia microscopic field under were recorded four randomly from selected microscopic fields in each case. The sclerotial count was grouped as: - =No; + = 10-20; ++ = 21-30; and +++ =above 30 sclerotia per microscopic field in respect of the sclerotial number (Das, 1988).

RESULTS AND DISCUSSION

The Richards' broth medium was taken as a basal medium in this study. The dry mycelial weight, microsclerotial production and a drift in pH mycelial harvesting after recorded. The data were statistically analyzed and presented in Table 1. The results clearly indicated that the fungus could grow and produced microsclerotia in a wide pH range i.e. 4.0 to 8.0 pH. Dry mycelial weight was significantly higher at pH 6.0 (643.00 mg), which was at par with pH 6.5 (638.33 mg). The next best in order of merit was pH 7.0 (391.00 mg), which was at par with pH 5.5 (381.00) followed by pH 7.5 (351.00 mg), which was at par with pH 5.0 (345.33 mg) and pH 4.0 (261.00 mg). The poor growth of the fungus was recorded at pH 8.0 (227.00 mg). The microsclerotial formation was of highest level at pH 6.0, pH 6.5 and pH 7.0. It was of medium level at pH 5.0, pH 5.5

and pH 7.5 and of low level at pH 4.0 and pH 8.0.

This study clearly indicated and micro-sclerotia growth production showed increasing trend by P. tropica with an increase in pH up to 6.5 and thereafter, it declined. The optimum pH for pathogen growth proved to be pH 6.0. It was also found that medium near acidic was more preferred by the fungus for the growth and micro-sclerotial production as compared to alkaline medium. The present findings tallied with those of Kumar (2006), who reported best mycelial weight of M. phaseolina at pH 6.5, the next best in order of merit was pH 6.0 followed by pH 5.5 and pH 4.0. Sharma et al. (2004) reported the highest mycelial growth and microsclerotial formation of four isolates of M. phaseolina at pH 6.5 to 7.0. Chang (1985) reported best mycelial growth and sclerotial formation of R. solani at pH 7.0.

CONCLUSION

From the results, it can be concluded that the fungus could grow at all the levels of pH tested, but growth and microsclerotial production were significantly superior in acidic medium as compared to alkaline, pH 6.0 appeared to be the optimum for growth and microsclerotial production.

ACKNOWLEDGEMENT

The authors expressed their gratitude to Director of Research & Dean P.G. Studies, Navsari Agricultural University, Navsari, Gujarat providing for necessary facilities during the present investigations. Authors are also thankful to ITCC. IARI, New Delhi for providing identification of the pathogens.

REFERENCES

Chang, Y. C. (1985). Effect of temperature, pH and water potential on mycelial growth

- and sclerotial formation of *Rhizoctonia solani*. *J. Agril*. *Res. China*, **34**(4): 454-463.
- Das, N. D. (1988). Effect of different sources of carbon, nitrogen and temperature on the and growth sclerotial production of M. phaseolina (Tassi.) Goid. causing root rot/charcoal rot disease of castor. Indian J. Plant Pathol., 6: 97-98.
- Kumar, A. (2006). Investigation on leaf spot [*Macrophomina phaseolina* (Tassi.) Goid.] of

- cowpea [Vigna unguiculata (L.) Walp.] under south Gujarat condition., M.Sc. (Agri.) Thesis (unpublished) submitted to Navasari Agricultural University, Navsari.
- Sharma, Y. K.; Gaur, R. B. and Bisnoi, H. R. (2004). Cultural, morphological and physiological variability in *Macrophomina phaseolina*. *J. Mycol. Pl. Pathol.*, **34**(2): 532-533.

Table 1: Effect of different pH regimes on growth and micro-sclerotial formation by *P. tropica*

Sr. No.	pН	Average Dry Mycelial Weight (mg)	Micro-Sclerotial Formation	Filtrate pH
1	4.0	2.41*(261.00)**	+	3.43
2	5.0	2.53 (345.33)	++	4.20
3	5.5	2.58 (381.00)	++	5.10
4	6.0	2.80 (643.00)	+++	5.53
5	6.5	2.80 (638.33)	+++	6.23
6	7.0	2.59 (391.00)	+++	6.97
7	7.5	2.54 (351.00)	++	7.21
8	8.0	2.35 (227.00)	+	7.93
	S. Em. <u>+</u>	0.0007		
	C.D. at 5%	0.0021		
	C.V. %	0.05		

^{*} Figures indicated log + 0 transformed values

[MS received: April 18, 2015] [MS accepted: May 29, 2015]

^{**} Figures in parentheses indicate retransformed values

⁺ Micro-sclerotial formation (no. of micro=sclerotia per microscopic field)