# STUDY OF PHYSIOLOGICAL QUALITY OF SEED ON THE BASIS OF GERMINATIVE PARAMETERS IN PEARL MILLET

\*KAMBLE, B. G.; JOSHI, A. S.; SAPRE, S. S. AND PATEL, J. B.

# JUNAGADH AGRICULTURAL UNIVERSITY JUNAGADH -362001, GUJARAT, INDIA

\*EMAIL: kamble.jau@gmail.com

#### **ABSTRACT**

The investigation was carried out to study the physiological quality of seed on the basis of non-germinative parameters in pearl millet. A number of nongerminative parameters such as imbibition rate, germination percentage, germination index, root length, shoot length, seedling length, root shoot length ratio, root fresh weight, shoot fresh weight, seedling fresh weight, root shoot fresh weight ratio, root dry weight, shoot dry weight, seedling dry weight, root shoot dry weight ratio, root moisture, shoot moisture, seedling moisture, vigour index -I, vigour index – II, mobilization efficiency, field emergence and field emergence rate (index) were recorded at bimonthly interval in the seed lots stored for a period of time till the germination level fell well below Indian Minimum Seed Certification Standard. Seeds of four hybrids of pearl millet viz., GHB 719, GHB 905, GHB 744 and GHB 732 along with their parental lines, in all total 10 entries, were stored and utilized for this study. Relative loss of vigour in hybrids and their respective parents paralleled the loss of seed viability was not necessarily observed in all the parameters studied, but wherever it was observed might be due to dominance or over dominance type of genetic expression. Most of the germinative parameters except seedling moisture exhibited a significant decline with the deterioration in seed vigour due to storage, and the entries also differed significantly.

KEY WORDS: Germination, hybrid, pearl millet, physiological quality, viability, vigour

#### INTRODUCTION

Pearl millet (Pennisetum glaucum (L.) R. Br.) is an important Kharif crop, which is known by various vernacular names such as Bajra (Hindi, Punjabi and Urdu), Bajri (Rajasthan, Marathi and Gujarati), Sajje (Kannada), Gantilu (Telugu) and Kambu (Tamil). It is well adapted to drought prone areas, low soil fertility, and high temperature situation. It also performs well in soils with high salinity or low pH. It can be grown in all those soil and climatic conditions

where other cereal crops, such as maize or rice, would not even survive. India is the largest producer of pearl millet in the world. In 2013-14, it occupied an area of 7.95 million ha with the production of 8.79 million tons per year and average productivity of 1106 kg/ha (Anonymous, 2014). Rajasthan, Maharashtra, Gujarat and Uttar Pradesh are the major pearl millet growing states of India. Gujarat has an area of 0.872 million hectares under pearl millet cultivation and production of 1.50 million tons with

1720 kg/ha productivity (Anonymous, 2013).

Seed viability and seedling vigour are dependent upon the extent of grain development. Selection of varieties with higher percentage of seed filling and larger seed size may lead to higher yields. The temperature at which the seed developed did not affect seed viability, but it did affect the vigour. Post-harvest dormancy has been reported for at least 14 days in pearl millet (Khairwal et al., 1980). Germination and seed vigour characteristics are the vital components of physiological quality of necessary to ensure optimum plant population with good vigour. However, the standard germination test (SGT) usually over predicts the field performance of a seed lot. Hence, importance of seed vigour as a quality parameter is emphasized (AOSA, 1983). Aged seeds show decreased vigour and produce weak seedlings that are unable to survive once reintroduced into a habitat (Atici et al., 2007). As pearl millet is grown under hostile environment in marginal soils, the vigour aspects of seed quality become more important. Present study was conducted to evaluate physiological quality of pearl millet seeds using germinative parameters. The germinative criteria physiological quality of seed are useful for evaluation of potential storage capacity of seed, seed viability and vigour, capacity to produce normal seedling and potential to develop a plant under favourable and adverse environmental conditions. Germinative evaluation, however, takes some time depending on the crop for assessment of physiological quality of seed. In pearl millet, standard germination test (SGT) takes seven days i.e. final count for germination percentage is taken at 7<sup>th</sup> day (ISTA, 1996).

#### MATERIALS AND METHODS

The experiment was conducted to study the physiological quality of seed on the basis of germinative parameters in pearl millet (Pennisetum glaucum (L.) R. Br.)" during 2014, at the Department of Seed Science and Technology and Department Biochemistry, College of Agriculture, Agricultural University, Junagadh Junagadh. The seeds of parents (95222A, J 2454, 04999 A, 98444 A, J 2340 and 96222) of pearl millet hybrids (GHB 719, GHB 905, GHB 744 and GHB 732) were obtained from Pearl Millet Research Station. Agricultural Junagadh University. Jamnagar and were multiplied as well fresh seeds of hybrids were produced in the kharif 2013 at Sagadividi farm of Department of Seed Science and Technology, JAU. Junagadh. The harvesting was done in the month of November 2013 and ear were kept for air-drying. Threshing was done in the month of January 2014. Since pearl millet seeds have time bound dormancy, the seeds were stored in the month of February 2014, once the dormancy was released (Joshi et al., 1996).

The seeds of each entry were stored in plastic containers kept in the laboratory under ambient conditions. The samples were drawn for evaluation of various germinative parameters at two months interval till the seed germination declined considerably below the Indian Minimum Seed Certification Standard, A number of germinative parameters imbibition rate (%), imbition rate index, germination percentage (ISTA, 1996), germination index (Maguire, 1962), root length (cm), shoot length (cm), seedling length (cm), root shoot length ratio, root fresh weight (mg), shoot fresh weight (mg), seedling fresh weight (mg), root shoot fresh weight

ratio, root dry weight (mg), shoot dry weight (mg), seedling dry weight (mg), root shoot dry weight ratio, root moisture (%), shoot moisture (%), seedling moisture (%), seed vigour index - I, seed vigour index - II, mobilization efficiency (%) (Hageman et. al., 1967), field emergence (%) and field emergence rate (index) were estimated in the dry seeds stored under ambient storage conditions employing CRD with four repetitions. The data were analyzed as per completely design (Gomez randomized Gomez, 1984).

# RESULTS AND DISCUSSION Imbibition

Germination commences with imbibition by the dry seed followed by a series of metabolic changes and ends with the protrusion of the radicle of the embryo through all the surrounding tissue. In the current investigation, imbibition rate at 0-4 hours, 4-10 hours and 10-16 hours of different entries at advancing storage period are presented in Table 1. The imbibition rate index is presented in Table 2. The imbibition rate 0-4 hours i.e. first phase of significantly imbibitions, differed among the entries, over the storage period along with its interaction (Table 1). The highest imbibition rate was recorded in female line 04999 A followed by GHB 905. In the second phase of imbibition i.e. 4-10 hours, the storage period did not differ significantly with regards to imbibition rate. The imbibition rate 10-16 hours i.e. third phase of imbitibiton differed significantly among entries and advancing storage period. Interestingly, during the advancing storage period i.e. seed ageing resulted in the decrease of this third phase of imbibition. With the advancement of the imbibition time, there was an increasing in the imbibition percentage, but an overall overview

suggested that there were three distinct phases - the first one was fast, second one was comparatively steady and third one was again faster. Nonogaki et al. (2007) depicted that initial water uptake is a physical process, which occurs in both leaving and dead seeds. Thus, for viable and non-dormant seeds, there is a three phase pattern of Phase water uptake. first characterized by rapid water uptake during which seed volume increases and some physiological activities are activated. Phase second is lag phase of imbibition. Physiological activities are speeded up, storage reserve mobilized. Although net water uptake is minimal, but major metabolic events take place in the seed. Only seeds that complete germination enters phase third imbibition, which occurs due cellular expansion associated with radical protrusion. Thus, water uptake during phase third is not proper imbibition per se, but rather the initial consequence of the completion of germination (Bewley et al., 2013).

#### Germination

Germination percentage recorded after 7 days (as per ISTA, 1996) had significant interaction effect (Table 2). Physiologically germination sensu stricto is associated with many metabolic, cellular and molecular events, rendering the radicle able to emerge from the seed (Bailly et al., 2004). Thus, it is worth noting that in the frame work of seed germination, cell division is not necessary for emergence radicle (Haber and Luippold, 1960). But recent transcriptomic analyses showed that the activation of the cell cycle in the Arabidopsis root meristem precedes the penetration of the seed envelop by the radicle and that D cyclines are limiting factors for this process (Masubelele et al., 2005). Although seed technology point of view, the

germination percentage is considered on the basis of fully established normal seedlings. Overall, the hybrids GHB 744 recorded the highest germination percentage followed by GHB 905. GHB 719 and GHB 732, respectively. However, among the parents, female 96222 Α recorded the highest germination percentage. Kulik and Yaklich (1982) reported significant decline in seed germinablity and deterioration under natural ageing and storage. The germination percentage recorded at different intervals was utilized in calculating germination index (GI), which reflected the overall performance of the seed lot and used for evaluation of the physiological quality of the seed. The simplest assessment of rate of germination can be made from the first count or preliminary count in germination test. The first count is indicative of quality of seed lot, the higher the percentage of normal seedlings, the higher the vigour (Powell and Matthews, 1992). More of assessment rate germination can be made by including more frequent counts of germination. These assessments, therefore, also reflect the pattern of germination. The entries and storage period differed significantly while the interaction between them was not significant with regard to germination index (Table 2). Overall, the hybrid GHB 744 recorded the highest value followed by GHB GHB 719 and GHB respectively. Among parents female parents, 96222 A recorded the highest value of germination index.

# Root length (cm)

The entries differed significantly with respect to root length, while the storage periods did not showed significant differences, though there was a numerical decline with the advancement of storage period (Table 3). The interaction between

entries and storage periods was significant and the highest root length was recorded in the hybrid GHB 744 at the initiation of storage (Feb-2014), while the lowest root length was recorded in the female parent 96222 A at the end of storage period (Oct-2014). Use of linear measurement of growth as a vigour test was first suggested by Germ (1960) for cereals and sugar beets. The test was further developed by Perry (1977). The difference in germination percentage and length measurement has been reported i.e. a cultivar showing faster and high germination not necessarily recorded the greater seedling length (Joshi et al., 1997b). Hence, seedling growth test offers another dimension of seedling vigour.

# Shoot length (cm)

The differences due to shoot length as influenced by storage periods and the entries were significant. The interaction between entries and storage periods was also significant (Table 3). Overall, there was a decline in shoot length with the increase in the storage period. Monira *et al.* (2012) reported the decline in root and shoot length due to storage period in soybean seeds. The hybrids GHB 905, GHB 744 and GHB 732 recorded higher shoot length.

## Seedling length (cm)

The differences in seedling length were non-significant, but storage period showed overall a significant decline and interaction between entries and storage period was also significant (Table 3). Agrawal and Kharlukhi (1985) considering seedling length as one of the vigour parameters found that the length of seedling declined under all conditions of storage.

#### Root/shoot length ratio

Root/Shoot length ratio differed significantly among the entries and storage period along with interaction

between them (Table 4). At the initial storage (Feb-2014), the root/ shoot ratio was minimum, while at later storage period. it increased significantly, but the differences among them were non-significant (April-2014 to Oct-2014). The highest root/shoot length ratio was recorded in female parent 04999 A. The minimum ratio was recorded in hybrid GHB 905.

#### Root fresh weight (mg)

The fresh weight measurements give a clue of vitality by way of water holding capacity of the living system. Roots are the organs through which water and minerals are absorbed, not only that but seedling establishment is mainly dependent on root growth as radicle is the first organ to emerge during seed germination. Particularly under adverse environmental condition seedling establishment has a great role to play. Root fresh weight in present investigation declined significantly with the advancement of the storage periods and it did differ significantly between the entries. The interaction effect was significant and the highest root fresh weight was recorded in the hybrid GHB 744 followed by GHB 719 at the initiation of storage (Feb-2014), while minimum was recorded by male parent, J 2454 at the end of storage period (Oct-2014) (Table 4).

#### Shoot fresh weight (mg)

Shoot fresh weight also showed declining trend over storage period and it differed significantly among the entries (Table 4). The interaction between two variables was also significant. In general, hybrid GHB 905 reported the highest value followed by GHB 744.

## Seedling fresh weight (mg)

The seedling fresh weight showed the decreasing trend with advancement of storage periods. The entries differed significantly and the highest value was recorded by GHB 744 followed by GHB 905, respectively. The minimum value was observed in the male parent J 2340 (Table 5).

#### Root/shoot fresh weight ratio

Root/shoot fresh weight ratio, in general, declined with respect to increasing storage period. This signifies that root fresh weight was affected more than the shoot fresh weight influenced by storage period (Table 5). Overall, the hybrids recorded the higher root/shoot fresh weight ratio as compared to the parents.

# Root dry weight (mg)

Vanangamudi and Natarajaratanam (1984) reported a relationship between roots and shoots dry weight and seedling vigour, which was reflected in the higher yields. The entries. storage period and their interaction were found statistically significant. There was a continuous declining in the root dry weight with advancement of ageing period (Table hybrids recorded 5). All the significantly higher root dry weight than their respective parents.

# Shoot dry weight (mg)

Agarwal and Kharlukhi (1985) considered seedling dry weight as a measure of seed vigour. Shoot dry weight was decreased with storage under all the conditions. In the present investigation, also shoot dry weight recorded a significant decrease with the ageing period. The entries also registered significant differences among themselves. Hybrids were more vigorous as compared to parent considering the shoot dry weight (Table 6).

# Seedling dry weight (mg)

Seedling dry weight differed significantly due to entries and decreased with the increase in the storage period (Table 6). Seedling dry weight was higher in hybrids as

compared to parents. This parameter was influenced more by its component shoot dry weight than that of root.

# Root/ shoot dry weight ratio

The root/shoot dry weight ratio decreased initially, but at later period of storage it remained steady. The differences in the entries were significant and overall hybrids recorded high root/shoot dry weight ratio except GHB 744 in comparison with their respective parents (Table 6). **Root moisture** (%)

# A critical appraisal of root moisture data indicated that entries, storage period and their interaction differed significantly. There was an increase in root moisture percentage with advancement of storage period. The highest root moisture was recorded in the hybrid GHB 744 followed by GHB 732 and female parent 04999 A, respectively (Table 7). **Shoot moisture** (%)

Shoot moisture differed significantly due to entries as well on period. storage The interaction between entries and storage period was also significant. There was a consistent increase the in shoot moisture percentage with advancement storage period (Table 7). The highest shoot moisture was recorded in hybrid GHB 905 followed by female parents 04999 A and 95222 A, respectively.

#### Seedling moisture (%)

Moisture of seedling as a whole differed significantly both due to entries and storage period. Seedling moisture also increased significantly as the storage period advanced (Table 7). The moisture content represents the vitality in terms of moisture holding capability of living system. The increasing seedling moisture percentage with seed ageing signifies that the dry weight accumulation was affected more adversely than the fresh weight.

#### Mobilization efficiency (%)

The mobilization efficiency represents the dry weight accumulation in embryo axis in comparison to reserve mobilization in the endosperm (Hageman et al.. 1967). The efficiency mobilization decreased significantly with ageing of seeds. The entries also differed significantly with respect to mobilization efficiency and overall hybrids performed better than the parents (Table 8).

# Seed Vigour Index

Looking to the importance of seed vigour in field performance of a seed lot, vigour indices are used to assay the physiological quality of the seed. Vigour index I is such an attempt to assess the seed quality which is a unit-less expression derived from the multiplication of germination percentage and mean seedling length 1976b). the (ISTA, In present investigation, the vigour index I recorded after 7 days differed significantly among entries, different storage period and their interactions (Table 8). Genotypic variations in vigour index have been reported and as it have been shown to be positively and significantly associated with the field emergence and establishment (Kumar et al., 1989 and Wanjari et al., 1992). There was a distinct decline in vigour index I as influenced by seed ageing.

Seed vigour index II was calculated based on integration of germination percentage and seedling dry weight (ISTA, 1976a). A greater cultivar with speed germination may not necessarily have the greater seedling length or seedling dry weight (Joshi et al., 1997a). Hence, integration of germination percentage and seedling dry weight or length depicted as vigour index will give the better idea of physiological quality of seed in terms of seedling vigour. The seed vigour index II

showed significant differences due to entries, storage period and their interaction (Table 8). There was a continuous decline in the seed vigour index II as influenced by the storage period. There are studies reporting reduction in germination, viability, dry matter and vigour index with response to period of ageing (Abdalla, F. H. and Roberts, 1969, Dharmalingam *et al.*, 1976, Ravichandran, 1991, Singh *et al.*, 2003, Varghese and Rai, 2005, Kumar and Rai, 2006, Kumar and Rai, 2009).

#### Field emergence count (%)

In peal millet, field emergence first count is taken at 3<sup>rd</sup> day after planting the seed (ISTA, 1993), which is an initial assessment of seed vigour under field conditions. In the present investigation, the differences with regard to field emergence first count due to entries and storage period both were significant along with significant interaction between them (Table 9). Increasing storage period resulted in significant reduction in first count field emergence percentage.

In pearl millet field emergence final count is taken after 7 days of planting the seed (ISTA 1993). Field emergence represents the actual physiological quality of a seed lot, since the field condition are always sub-optimal and the germination percentage recorded standard in germination test (SGT) taken under favoruable and optimal laboratory conditions are always higher than those obtained under field condition. This necessitates the development criterion identification of which matches the actual field performance taking into consideration the seed characteristics vigour which reflected directly or indirectly by some germinative criteria. Field emergence final count registered lower values when compared with the final count in

laboratory germination taken under more congenial condition. The field emergence differed significantly due to entries. The storage period also had an adverse effect on the field emergence, obviously reflecting deterioration of physiological quality of seed lot (Table physiological The quality 9). deteriorates at three levels (Noli et al.. 2008). Both seed and seedling vigour are influenced by genetic and nongenetic components, the latter being related to environmental conditions during seed production (Burris, 1977, Munamava et al., 2004), to timing of seed harvesting (Bochicchio et al., 1986, Ajayi et al., 2005), to drying (Tekrony et al., 1989) and to storage condition (Abba and Lovato, 1999). Producers rely on result of the standard germination test, which is printed on to give them reliable seed tag, information to use in making planting However, many decisions. weaknesses are not detected standard germination test (Byrum and Copeland, 1995).

## Field emergence index

Field emergence rate is again a reflection of seed vigour aspect of seed lot with special reference to its performance under field conditions. Field emergence index in the present investigation displayed significant differences among the entries as well due to storage period. interaction between entries and storage period was also significant. There was distinct decline in the emergence index discernible with seed ageing (Table 9).

#### **CONCLUSION**

On the basis of above results, it can be concluded that relative loss of vigour in hybrids and their respective parents paralleled the loss of seed viability was not necessarily observed in all the germinative parameters studied, but wherever it was observed

might be due to dominance or over dominance type of genetic expression. Most of the germinative parameters except seedling moisture exhibited a significant decline with the deterioration in seed vigour due to storage, and the entries also differed significantly.

#### REFERENCES

- Abba, E. J. and Lovato. A. (1999). Effect of seed storage temperature and relative humidity on maize (*zea mays* L) seed viability and vigour. *Seed Sci. Technol.*, **27**: 101-114.
- Abdalla, F. H. and Roberts, E. H. (1969. The effect of seed storage conditions on the growth and yield of barley, broad bean and peas. *Annls*. *Bot.*, **33**: 169-184.
- Agrawal, P. K. and Kharlukhi, L. (1985). Germination, vigour and leaching of water soluble sugars from seeds of three species during storage under controlled conditions. *Seed Res.*, **13**: 99-114.
- Ajayi, S.A.; Ruhl, G. and Greef, J.M. (2005). Physological basis of quality development in relation to compositional changes in maize seed. *Seed Sci. Technol.*, **33:** 605-621.
- Anonymous (2013). http://dag.gujarat.gov.in/images /directorofagriculture/pdf/apy\_ 1011\_final.pdf
- Anonymous (2014). Project Coordinator Review. 49th Annual Group Meeting. All India Coordinated
- AOSA (1983). Seed Vigour Testing Handbook. Contribution No. 32 to the Handbook of Seed Testing. Association of Official Seed Analysts, Ithaca, New York.

- Atici, O.; Agar, G. and Battal, P. (2007). Influence of long term storage on plant growth substance levels, germination and seedling growth in legume seed stored for 37 years. *Indian J. Pl. Physiol.*, **12**: 1-5.
- Bailly, C.; Leymarie, J.; Lehner, A.; Rousseau, S.; Come, D. and Corbineau, F.(2004). Catalase activity and expression in developing sunflower seeds as related to drying. *J. Exptl. Bot.*, **55**: 475-483.
- Bewley, J. D.; Bradford, K. J.; Hilhorst, H. W. M. and Nonogaki, H. (2013). Seeds: Physiology of Development, Germination and Dormancy. 3<sup>rd</sup> edition. Springer. New York.
- Bochicchio, A., C.; Vazzana, A. R. and Salamini, F. (1986). Effetto dello stadio di maturazione e dell'eta del seme sulla primo germinazione e  $20^{0}$ C accrescimento a ein condizioni di cold test, per di mais di larga diffusione in Italia. Rivista di Agronomia, 20: 395-405.
- Burris, J. S. (1977). Effect of location of production and maternal parentage on seedling vigour in hybrid maize (*Zea mays*). *Seed Sci. Technol.*, **19:** 15-23.
- Byrum, J. R and Copeland, L. O. (1995). Variability in vigour testing of maize (*Zea mays* L.) seed. *Seed Sci. Technol.*, **23**: 543-549.
- Dharmalingam, C.; Ramakrishan, V. and Ramaswamy, K. R. (1976). Viability and vigour of stored seeds of black gram (*Vigna mungo* L.) Hepper in India. *Seed Res.*, **4**: 40-50.
- Germ, H. (1960). Methodology of the vigour test for wheat, maize and barley in rolled filter paper.

- Proceedings of the International Seed Testing Association. 25, 515-518.
- Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedure for Agricultural Research. 2<sup>nd</sup> Ed. A Wiley Interscience Publication. John Wiley & Sons, Inc., Singapore.
- Haber, A. H. and Luippold, H. J. (1960). Separation of mechanisms initiating cell division and cell expansion in lettuce seed germination. *Pl. Physiol.*, **35**: 168-173.
- Hageman, R. H.; Leng, E. R and Dudley, J. W. (1967). A biological approach to corn breeding. *Adv. Agron.*, **19**: 45-86.
- ISTA (1976a). International Rules for Seed Testing Association. *Seed Sci. Technol.*, **4**: 3-49.
- ISTA (1976b). International Rules for Seed Testing. Annexures. *Seed Sci. Technol.*, **4:** 51-177.
- ISTA (1993). International Rules for Seed Testing Association. *Seed Sci. Technol.*, **21** (supplement): 1-288.
- ISTA (1996). International Rules for Seed Testing Association. *Seed Sci. Technol.*, 24 (supplement): 29-72.
- Joshi, A. K.; Pandya, J. N.; Mathukia, R. K.; Pethani, K. V. and Dave, H. R. (1997a). Seed germination in pearl millet hybrids and parents under extreme temperature conditions. *GAU Res. J.*, **23**: 77-83.
- Joshi, A. K.; Patel, I. D.; Pandya, J. N.; Pethani, K. V. and Dave, H. R. (1996). Study of seed dormancy in pearl millet (*Pennisetum glaucum*) hybrids. *J. Sci. Agric. Res.*, **57**: 41-54.

- Joshi, A. K.; Patel, I. D.; Rathod, N. D.; Pethani, K. V. and Dave, H. R. (1997b). Assessment of physiological maturity in pearl millet (*Pennisetum glaucum*) hybrids. *J. Sci. Agric. Res.*, **58**: 43-50.
- Khairwal, I. S.; Kapoor, R. L. and Yadav, H. P. (1980). Seed dormancy and its genetic basis in pearl millet. *Seeds Farms*, **6**: 25-28.
- Kulik, M. M. and Yaklich, R. W. (1982. Evaluation of vigour tests in soybean seeds: Relationship of accelerated aging, cold, sand bench and speed of germination tests to field performance. *Crop Sci.*, 22: 766-770.
- Kumar, G. and Rai, P. K. (2006). Cytogenetical impact of ageing in six inbreds lines of maize (*Zea mays* L). *The Nucleus*. **49**(3): 177-181.
- Kumar, G. and Rai, P. K. (2009). Genetic repairing through storage of gamma irradiated seeds in maize (*zea mays* L) inbred. *Turk. J. Biol.*, **33**: 195-204.
- Kumar, R.; Tyagi, C. S. and Ram, C. (1989). Association of laboratory seed parameters with field performance in mungbean. Seeds and forms field performance in mungbean. Seeds Farms, 15: 33-36.
- Maguire, J. D. (1962). Speed of germination aid in selection and evaluation for seedling emergence and vigour. *Crop Sci.*, **2**: 176-177.
- Masubelele, N.H.; Dewitte, W.;
  Menges, M.; Maughan, S.;
  Collins, C.; Huntley, R.;
  Nieuwland, J.; Scofeild, S. and
  Murray, J. A. H. (2005). D-type
  cyclins activate division in the

- root apex to promote seed germination in Arabidopsis. *Proceedings of the National Academy of Sciences. USA*. **102**. 15694-15699.
- Monira, U. S.; Amin M. H. A.; Marin M and Mamum, M. A. A. (2012). Effect of containers on seed quality of storage soybean seed. *Bangladesh Res. Publi. J.*, **7**(4): 421-427.
- Munamava, M. R; Goggi, A. S. and Pollak, L. (2004). Seed quality of maize inbred lines with different composition and genetic back grounds. *Crop Sci.*, **44**: 542-548.
- Noli, E.; Casarini, E; Urso, G. and Conti, S. (2008). Suitability of three vigour test procedures to predict field performance of early sown maize *seed*. *Seed Sci. Technol.*, **36**: 168-176.
- Nonogaki, H.; Chen, F. and Bradford, K. J. (2007). Mechanisms and genes involved in germination sensu stricto. In K.J. Bradford, H. Nonogaki, eds, Seed Development, Dormancy and Germination, Blackwell Publishing Plant Science, Oxford, pp 264-304.
- Perry, D. A. (1977). A vigour tests for seeds to barley based on measurement of plumule growth. *Seed Sci. Technol.*, **5**: 709-719.
- Powell, A. A. and Matthews, S. (1992). Seed Vigour and its Measurement. In: Techniques in Seed Science and Technology, Agrawal, P.K. and Dadlani, M. (Eds.). 2<sup>nd</sup> Edn., Chap. 9, South Asian Publishers, India, pp: 98-107.

- Ravichandran, G. (1991). Studies on the pattern deterioration, the performance of progenies of differentially aged seeds in the field and the quality of their resultant seeds maize, groundnut and Thesis soybean. M.Sc. (unpublished), Department of Technology, Seed TNAU. Coimbatore, India.
- Singh, B.; Singh C. B. and Gupta, P. C. (2003). Influence in seed ageing in *Vigna* species. *Farm Sci. J.*, **12**(1): 4-7.
- Tekrony, D. M.; Egli, D. B. and Wickham, D. A. (1989). Corn seed vigour effect on no-tillage field performance. I. Field emergence. *Crop Sci.*, **29**: 1523-1528.
- Vanangamudi, M. and Natarajaratanam, N. (1984). Seed and seedling physiology in twelve genotypes of Bajra. *Madras Agril. J.*, **6**: 382-386.
- Varghese, K. and Rai, P. K. (2005). Variation in growth performance of maize inbreds stored under ambient conditions. M.Sc. (Ag) thesis (unpublished), Department of Genetics and Plant Breeding Seed Science and and Technology, AAI (DU), Allahabad, U.P., India.
- Wanjari, S. S.; Potdukhe, N. R.; Dhope, A. M.; Shekar, V. B and Patil, D. B. (1992). Effect of seed size on germination, field emergence and vigour in some sorghum genotypes. *Agril. Sci. Digest*, **12**: 59-61.

Table 1: Imbibition rate 0-4 hours (%), 4-10 hours (%) and 10-16 hours (%) in seeds of pearl millet entries (four hybrids and their respective parents) after different periods of storage

|             |        |        |             |           |        |        |       | Date   | s of sam   | oling     |          |        |       |        |           |         |         |        |
|-------------|--------|--------|-------------|-----------|--------|--------|-------|--------|------------|-----------|----------|--------|-------|--------|-----------|---------|---------|--------|
| Entries     |        |        |             |           |        |        | Feb-  | Apr-   | June-      | Aug-      | Oct-     |        | Feb-  | Apr-   | June-     | Aug-    | Oct-    |        |
| Entries     | Feb-14 | Apr-14 | June-14     | Aug-14    | Oct-14 | Pooled | 14    | 14     | 14         | 14        | 14       | Pooled | 14    | 14     | 14        | 14      | 14      | Pooled |
|             |        | Imbi   | bition rate | 0-4 hours | (%)    |        |       | Imbibi | ition rate | e 4-10 ho | ours (%) | )      |       | Imbibi | tion rate | 10-16 h | ours (% | )      |
| GHB 719     | 13.45  | 12.60  | 11.48       | 11.33     | 10.41  | 11.85  | 7.60  | 6.40   | 6.11       | 5.76      | 5.33     | 6.24   | 18.04 | 16.09  | 15.84     | 16.03   | 16.28   | 16.46  |
| 95222 A     | 7.38   | 7.38   | 6.93        | 7.18      | 6.87   | 7.15   | 9.25  | 8.52   | 7.68       | 7.21      | 7.15     | 7.96   | 13.13 | 11.87  | 11.73     | 11.67   | 11.31   | 11.94  |
| J 2454      | 12.21  | 11.90  | 10.88       | 10.41     | 10.31  | 11.14  | 7.19  | 7.14   | 6.24       | 6.17      | 7.26     | 6.80   | 18.99 | 19.93  | 18.30     | 17.10   | 17.16   | 18.29  |
| GHB 905     | 16.59  | 19.13  | 17.46       | 18.23     | 18.71  | 18.02  | 5.45  | 6.48   | 6.37       | 6.25      | 5.75     | 6.06   | 10.37 | 10.05  | 9.59      | 7.79    | 7.90    | 9.14   |
| 04999 A     | 25.40  | 19.95  | 19.55       | 19.36     | 17.65  | 20.38  | 6.63  | 6.37   | 7.68       | 5.82      | 5.44     | 6.39   | 17.25 | 17.08  | 16.40     | 16.24   | 15.74   | 16.54  |
| GHB 744     | 19.60  | 17.18  | 14.12       | 13.34     | 13.39  | 15.52  | 6.98  | 5.30   | 12.34      | 11.32     | 10.84    | 9.36   | 14.55 | 13.99  | 12.63     | 13.43   | 12.58   | 13.43  |
| 98444 A     | 21.88  | 15.72  | 14.64       | 14.31     | 14.48  | 16.20  | 7.47  | 12.14  | 12.62      | 11.08     | 11.84    | 11.03  | 13.61 | 14.07  | 12.57     | 11.65   | 11.50   | 12.68  |
| J 2340      | 25.74  | 14.64  | 13.91       | 17.64     | 13.26  | 17.04  | 5.39  | 8.57   | 8.28       | 7.29      | 7.66     | 7.44   | 18.10 | 18.34  | 17.38     | 17.47   | 17.35   | 17.72  |
| GHB 732     | 14.56  | 15.95  | 15.53       | 14.15     | 13.35  | 14.71  | 5.64  | 5.66   | 6.49       | 6.25      | 11.56    | 7.12   | 16.82 | 17.45  | 17.09     | 16.67   | 16.35   | 16.87  |
| 96222 A     | 15.67  | 11.90  | 12.19       | 12.49     | 13.55  | 13.16  | 6.89  | 5.95   | 6.19       | 5.98      | 13.85    | 7.77   | 15.62 | 15.15  | 15.42     | 14.77   | 14.46   | 15.08  |
| Mean        | 17.25  | 14.63  | 13.67       | 13.84     | 13.20  |        | 6.85  | 7.25   | 8.00       | 7.31      | 8.67     |        | 15.65 | 15.40  | 14.69     | 14.28   | 14.06   |        |
| S.Em.±      | 1.21   | 0.53   | 0.42        | 1.32      | 1.32   | 0.87   | 0.40  | 0.29   | 0.49       | 0.31      | 0.31     | 0.83   | 0.96  | 0.41   | 0.23      | 0.70    | 0.70    | 0.28   |
| C.D. at 5 % | 3.48   | 1.52   | 1.22        | 3.80      | 2.27   | 2.49   | 1.16  | 0.85   | 1.42       | 0.90      | 1.57     | 2.37   | 2.76  | 1.19   | 0.67      | 2.02    | 1.71    | 0.79   |
| C.V. %      | 13.99  | 7.18   | 6.18        | 19.01     | 11.93  | 12.72  | 11.68 | 8.08   | 12.32      | 8.53      | 12.57    | 11.03  | 12.22 | 5.37   | 3.17      | 9.79    | 8.42    | 8.49   |
| D           |        |        |             |           |        |        |       |        |            |           |          |        |       |        |           |         |         |        |
| S.Em.±      |        |        |             |           |        | 0.61   |       |        |            |           |          | 0.58   |       |        |           |         |         | 0.20   |
| C.D. at 5 % |        |        |             |           |        | 1.76   |       |        |            |           |          | NS     |       |        |           |         |         | 0.56   |
| D×E         |        |        |             |           |        |        |       |        |            |           |          |        |       |        |           |         |         |        |
| S.Em.±      |        |        |             |           |        | 0.92   |       |        |            |           |          | 0.42   |       |        |           |         |         | 0.63   |
| C.D. at 5 % |        |        |             |           |        | 2.58   |       |        |            |           |          | 1.18   |       |        |           |         |         | NS     |

Table 2: Imbibition rate index, germination percentage (7 days) and germination index in seeds of pearl millet entries (four hybrids and their respective parents) after different periods of storage

|             |        |        |             |           |        |        |       | Dat    | es of sa | mpling  |         |        |        |        |          |          |        |        |
|-------------|--------|--------|-------------|-----------|--------|--------|-------|--------|----------|---------|---------|--------|--------|--------|----------|----------|--------|--------|
| Entries     |        |        |             |           |        |        | Feb-  | Apr-   | June-    | Aug-    | Oct-    |        |        |        | June-    |          |        |        |
| Littles     | Feb-14 | Apr-14 | June-14     | Aug-14    | Oct-14 | Pooled | 14    | 14     | 14       | 14      | 14      | Pooled | Feb-14 | Apr-14 | 14       | Aug-14   | Oct-14 | Pooled |
|             |        | In     | nbibition r | ate index |        |        | G     | ermina | tion per | centage | (7 Days | s)     |        | G      | erminati | on index |        |        |
| GHB 719     | 7.64   | 6.90   | 6.53        | 6.47      | 6.21   | 6.75   | 87.75 | 84.75  | 78.75    | 71.00   | 64.75   | 77.40  | 600.36 | 576.05 | 539.62   | 520.93   | 492.86 | 545.96 |
| 95222 A     | 5.57   | 5.24   | 4.97        | 4.94      | 4.79   | 5.10   | 84.25 | 80.25  | 74.25    | 66.75   | 61.50   | 73.40  | 555.42 | 526.40 | 454.97   | 437.83   | 439.27 | 482.78 |
| J 2454      | 7.41   | 7.49   | 6.81        | 6.48      | 6.65   | 6.97   | 81.00 | 84.00  | 70.50    | 67.50   | 63.25   | 73.25  | 506.54 | 474.56 | 512.55   | 495.30   | 484.35 | 494.66 |
| GHB 905     | 6.78   | 7.54   | 7.02        | 6.90      | 6.95   | 7.04   | 93.25 | 90.75  | 85.25    | 80.00   | 73.50   | 84.55  | 626.75 | 559.22 | 559.50   | 521.18   | 507.17 | 554.76 |
| 04999 A     | 10.33  | 8.90   | 8.90        | 8.51      | 7.94   | 8.92   | 84.50 | 80.75  | 75.50    | 70.75   | 68.75   | 76.05  | 565.24 | 536.72 | 509.05   | 484.10   | 472.60 | 513.54 |
| GHB 744     | 8.49   | 7.51   | 7.69        | 7.46      | 7.25   | 7.68   | 97.25 | 93.25  | 87.00    | 78.50   | 72.75   | 85.75  | 664.30 | 611.03 | 623.21   | 590.08   | 580.14 | 613.75 |
| 98444 A     | 8.98   | 8.30   | 7.86        | 7.36      | 7.51   | 8.00   | 87.50 | 84.25  | 77.75    | 73.25   | 69.00   | 78.35  | 591.30 | 562.98 | 526.11   | 473.72   | 476.53 | 526.13 |
| J 2340      | 10.35  | 8.15   | 7.75        | 8.54      | 7.48   | 8.45   | 84.75 | 81.25  | 73.25    | 72.50   | 64.50   | 75.25  | 551.28 | 525.40 | 503.48   | 472.03   | 497.04 | 509.85 |
| GHB 732     | 7.38   | 7.84   | 7.81        | 7.36      | 7.99   | 7.68   | 89.25 | 80.50  | 76.75    | 71.00   | 65.00   | 76.50  | 551.65 | 536.17 | 506.11   | 499.67   | 476.91 | 514.10 |
| 96222 A     | 7.67   | 6.49   | 6.65        | 6.58      | 8.11   | 7.10   | 89.00 | 84.50  | 79.00    | 68.75   | 67.50   | 77.75  | 616.43 | 577.10 | 550.94   | 513.37   | 507.55 | 553.08 |
| Mean        | 8.06   | 7.43   | 7.20        | 7.06      | 7.09   |        | 87.85 | 84.43  | 77.80    | 72.00   | 67.05   |        | 582.93 | 548.56 | 528.56   | 500.82   | 493.44 |        |
| S.Em.±      | 0.47   | 0.22   | 0.20        | 0.42      | 0.42   | 0.23   | 1.30  | 1.05   | 1.15     | 1.43    | 1.43    | 0.82   | 11.43  | 18.22  | 18.15    | 15.35    | 15.35  | 8.14   |
| C.D. at 5 % | 1.37   | 0.65   | 0.56        | 1.22      | 0.98   | 0.65   | 3.75  | 3.02   | 3.32     | 4.12    | 3.76    | 2.36   | 33.01  | 52.61  | 52.42    | 44.34    | NS     | 22.79  |
| C.V. %      | 11.74  | 6.05   | 5.42        | 11.94     | 9.58   | 9.44   | 2.96  | 2.48   | 2.95     | 3.96    | 3.88    | 3.22   | 3.92   | 6.64   | 6.87     | 6.13     | 10.15  | 6.86   |
| D           |        |        |             |           |        |        |       |        |          |         |         |        |        |        |          |          |        |        |
| S.Em.±      |        |        |             |           |        | 0.16   |       |        |          |         |         | 0.58   |        |        |          |          |        | 5.75   |
| C.D. at 5 % |        |        |             |           |        | 0.46   |       |        |          |         |         | 1.67   |        |        |          |          |        | 16.11  |
| D×E         |        |        |             |           |        |        |       |        |          |         |         |        |        |        |          |          |        |        |
| S.Em.±      |        |        |             |           |        | 0.35   | _     |        |          |         |         | 1.25   |        |        |          |          |        | 18.20  |
| C.D. at 5 % |        |        |             |           |        | 0.97   |       |        |          |         |         | 3.50   |        |        |          |          |        | NS     |

\_\_\_\_\_\_\_

Table 3: Root length (cm), shoot length (cm) and seedling length (cm) in seeds of pearl millet entries (four hybrids and their respective parents) after different periods of storage

|             |        |       |            |         |        |        |      | Dat    | es of sa | mpling   |      |        |        |        |       |        |        |        |
|-------------|--------|-------|------------|---------|--------|--------|------|--------|----------|----------|------|--------|--------|--------|-------|--------|--------|--------|
| Entries     |        |       |            |         |        |        | Feb- |        | June-    | Aug-     | Oct- |        |        |        | June- |        |        |        |
| Littles     | Feb-14 |       | June-14    |         | Oct-14 | Pooled | 14   | Apr-14 | 14       | 14       |      | Pooled | Feb-14 | Apr-14 | 14    | Aug-14 | Oct-14 | Pooled |
|             |        |       | Root lengt | th (cm) |        | _      |      |        |          | gth (cm) |      | 1      |        | _      |       |        |        |        |
| GHB 719     | 8.26   | 9.84  | 10.54      | 10.51   | 8.79   | 9.59   | 5.90 | 4.50   | 5.14     | 5.68     | 5.36 | 5.31   | 14.18  | 14.32  | 15.80 | 16.19  | 14.28  | 14.95  |
| 95222 A     | 10.86  | 8.56  | 7.68       | 9.75    | 8.50   | 9.07   | 6.61 | 4.51   | 5.30     | 5.43     | 5.01 | 5.37   | 17.47  | 13.99  | 12.98 | 15.18  | 13.50  | 14.63  |
| J 2454      | 10.20  | 8.87  | 8.68       | 9.43    | 8.48   | 9.13   | 7.41 | 4.95   | 4.17     | 5.16     | 4.55 | 5.25   | 18.94  | 13.82  | 12.85 | 14.59  | 13.03  | 14.64  |
| GHB 905     | 6.78   | 6.01  | 9.56       | 9.97    | 8.81   | 8.23   | 8.80 | 10.73  | 5.41     | 6.25     | 5.74 | 7.38   | 15.58  | 16.49  | 14.97 | 16.21  | 14.77  | 15.60  |
| 04999 A     | 10.65  | 11.45 | 10.38      | 9.35    | 8.61   | 10.09  | 6.23 | 4.53   | 4.41     | 4.62     | 4.23 | 4.81   | 16.88  | 15.91  | 14.79 | 13.97  | 12.84  | 14.88  |
| GHB 744     | 11.43  | 12.17 | 9.38       | 10.04   | 9.35   | 10.47  | 8.61 | 6.52   | 5.47     | 5.78     | 5.35 | 6.35   | 20.04  | 18.71  | 14.97 | 15.82  | 14.70  | 16.85  |
| 98444 A     | 11.17  | 11.63 | 8.68       | 10.10   | 9.46   | 10.21  | 7.47 | 5.51   | 4.74     | 5.98     | 5.38 | 5.81   | 17.67  | 17.16  | 13.23 | 16.08  | 14.84  | 15.79  |
| J 2340      | 10.95  | 9.57  | 11.27      | 10.73   | 8.92   | 10.29  | 7.18 | 6.17   | 5.21     | 5.62     | 5.09 | 5.85   | 18.13  | 16.24  | 16.45 | 16.34  | 15.00  | 16.43  |
| GHB 732     | 10.13  | 7.82  | 10.53      | 9.67    | 8.92   | 9.41   | 8.55 | 5.64   | 6.67     | 5.94     | 5.45 | 6.45   | 18.68  | 13.47  | 17.19 | 15.61  | 14.36  | 15.86  |
| 96222 A     | 11.35  | 8.10  | 6.18       | 8.38    | 7.78   | 8.35   | 8.87 | 6.40   | 4.26     | 4.82     | 4.46 | 5.76   | 20.22  | 14.35  | 10.44 | 13.20  | 12.24  | 14.09  |
| Mean        | 10.18  | 9.40  | 9.28       | 9.79    | 8.76   |        | 7.56 | 5.95   | 5.08     | 5.53     | 5.06 |        | 17.78  | 15.44  | 14.37 | 15.32  | 13.95  |        |
| S.Em.±      | 0.68   | 0.49  | 0.18       | 0.33    | 0.33   | 0.54   | 0.34 | 0.23   | 0.12     | 0.16     | 0.16 | 0.39   | 0.81   | 0.66   | 0.24  | 0.43   | 0.43   | 0.66   |
| C.D. at 5 % | 1.96   | 1.42  | 0.53       | 0.96    | 0.86   | 1.56   | 0.99 | 0.66   | 0.36     | 0.47     | 0.58 | 1.11   | 2.33   | 1.89   | 0.71  | 1.23   | 1.21   | NS     |
| C.V. %      | 13.33  | 10.49 | 3.98       | 6.76    | 6.77   | 9.12   | 9.08 | 7.70   | 4.86     | 5.92     | 7.89 | 7.70   | 9.08   | 8.48   | 3.41  | 5.56   | 6.02   | 7.12   |
| D           |        |       |            |         |        |        |      |        |          |          |      |        |        |        |       |        |        |        |
| S.Em.±      |        |       |            |         |        | 0.38   |      |        |          |          |      | 0.27   |        |        |       |        |        | 0.47   |
| C.D. at 5 % |        |       |            |         |        | NS     |      |        |          |          |      | 0.78   |        |        |       |        |        | 1.35   |
| D×E         |        |       |            |         |        |        |      |        |          |          |      |        |        |        |       |        |        |        |
| S.Em.±      |        |       |            |         |        | 0.43   |      |        |          |          |      | 0.22   |        |        |       |        |        | 0.55   |
| C.D. at 5 % |        |       | •          | •       |        | 1.21   |      | •      | •        |          | •    | 0.63   |        | •      | •     |        | •      | 1.53   |

Table 4: Root/shoot length ratio, root fresh weight (mg 10 root<sup>-1</sup> ) and shoot fresh weight (mg 10 shoot<sup>-1</sup>) in seeds of pearl millet entries (four hybrids and their respective parents) after different periods of storage

|             |        |        |           |        |        |        |        |           | Date     | s of sam | nling  |        |        |        |            |        |                      |        |
|-------------|--------|--------|-----------|--------|--------|--------|--------|-----------|----------|----------|--------|--------|--------|--------|------------|--------|----------------------|--------|
| -           |        |        |           |        |        |        |        |           | June-    | S OI Sam |        |        |        |        |            |        |                      |        |
| Entries     | Feb-14 | Apr-14 | June-14   | Aug-14 | Oct-14 | Pooled | Feb-14 | Apr-14    | 14       | Aug-14   | Oct-14 | Pooled | Feb-14 | Apr-14 | June-14    | Aug-14 | Oct-14               | Pooled |
|             |        |        | t/shot le |        |        |        |        | root fres | h weight |          | •      |        |        |        | esh weight |        | noot <sup>-1</sup> ) |        |
| GHB 719     | 1.41   | 2.19   | 2.06      | 1.85   | 1.64   | 1.83   | 65.00  | 56.75     | 54.00    | 52.50    | 50.75  | 55.80  | 251.50 | 244.50 | 240.25     | 239.50 | 236.00               | 242.35 |
| 95222 A     | 1.63   | 1.88   | 1.45      | 1.79   | 1.69   | 1.69   | 47.00  | 37.75     | 34.00    | 35.75    | 33.50  | 37.60  | 239.75 | 234.75 | 233.50     | 229.50 | 225.75               | 232.65 |
| J 2454      | 1.40   | 1.80   | 2.08      | 1.83   | 1.88   | 1.80   | 32.00  | 27.75     | 24.50    | 21.50    | 19.25  | 25.00  | 218.75 | 209.75 | 204.75     | 227.00 | 274.25               | 226.90 |
| GHB 905     | 0.77   | 0.56   | 1.77      | 1.59   | 1.53   | 1.25   | 52.25  | 52.25     | 50.75    | 47.50    | 43.75  | 49.30  | 320.00 | 309.00 | 307.50     | 302.25 | 299.00               | 307.55 |
| 04999 A     | 1.71   | 2.53   | 2.36      | 2.03   | 2.04   | 2.14   | 49.75  | 44.75     | 42.50    | 40.25    | 36.50  | 42.75  | 252.25 | 239.25 | 237.75     | 235.50 | 231.00               | 239.15 |
| GHB 744     | 1.33   | 1.86   | 1.71      | 1.74   | 1.76   | 1.68   | 75.50  | 78.75     | 67.00    | 67.75    | 64.25  | 70.65  | 307.50 | 302.75 | 301.00     | 297.25 | 294.75               | 300.65 |
| 98444 A     | 1.50   | 2.12   | 1.83      | 1.69   | 1.76   | 1.78   | 37.25  | 36.50     | 33.25    | 31.00    | 29.75  | 33.55  | 209.00 | 203.75 | 201.50     | 197.25 | 194.5                | 241.20 |
| J 2340      | 1.54   | 1.55   | 2.16      | 1.91   | 1.75   | 1.78   | 33.75  | 27.75     | 24.50    | 22.50    | 23.25  | 26.35  | 232.25 | 215.50 | 212.00     | 207.75 | 203.50               | 214.20 |
| GHB 732     | 1.18   | 1.39   | 1.58      | 1.63   | 1.64   | 1.48   | 53.75  | 57.25     | 54.50    | 52.00    | 48.75  | 53.25  | 263.50 | 259.00 | 256.75     | 251.75 | 249.25               | 256.05 |
| 96222 A     | 1.28   | 1.26   | 1.45      | 1.74   | 1.75   | 1.49   | 41.50  | 34.25     | 32.00    | 28.25    | 25.50  | 32.30  | 219.25 | 216.25 | 213.25     | 208.75 | 205.25               | 212.55 |
| Mean        | 1.37   | 1.71   | 1.85      | 1.78   | 1.74   |        | 48.78  | 45.38     | 41.70    | 39.90    | 37.53  |        | 251.38 | 243.45 | 240.83     | 239.6  | 241.33               |        |
| S.Em.±      | 0.078  | 0.070  | 0.036     | 0.038  | 0.038  | 0.105  | 1.60   | 1.67      | 0.83     | 0.35     | 0.35   | 0.99   | 4.12   | 1.67   | 1.38       | 7.65   | 7.65                 | 4.68   |
| C.D. at 5 % | 0.226  | 0.203  | 0.105     | 0.110  | 0.125  | 0.302  | 4.62   | 4.82      | 2.41     | 1.02     | 2.77   | 2.83   | 11.91  | 4.84   | 3.99       | 22.11  | 21.56                | 13.43  |
| C.V. %      | 11.40  | 8.21   | 3.97      | 4.3    | 4.97   | 6.64   | 6.57   | 7.35      | 4.00     | 1.77     | 5.11   | 5.58   | 3.28   | 1.38   | 1.15       | 6.39   | 6.19                 | 4.29   |
| D           |        |        |           |        |        |        |        |           |          |          |        |        |        |        |            |        |                      |        |
| S.Em.±      |        |        |           |        |        | 0.074  |        |           |          |          |        | 0.70   |        |        |            |        |                      | 3.30   |
| C.D. at 5 % |        |        |           |        |        | 0.213  |        |           |          |          |        | 2.00   |        |        |            |        |                      | NS     |
| D×E         |        |        |           |        |        |        |        |           |          |          |        |        |        |        |            |        |                      |        |
| S.Em.±      |        |        |           |        |        | 0.056  |        |           |          |          |        | 1.19   |        |        |            |        |                      | 5.22   |
| C.D. at 5 % |        |        |           |        |        | 0.157  |        |           |          |          |        | 3.33   |        |        |            |        |                      | 14.61  |

Table 5: Seedlings fresh weight (mg 10 seedling<sup>-1</sup>), root/shoot fresh weight ratio and root dry weight (mg 10 root<sup>-1</sup>) in seeds of pearl millet entries (four hybrids and their respective parents) after different periods of storage

|             |        |           |            |            |                        |        |        | Dates o | f sampli | ng       |        |        |       |          |           |         |                     |        |
|-------------|--------|-----------|------------|------------|------------------------|--------|--------|---------|----------|----------|--------|--------|-------|----------|-----------|---------|---------------------|--------|
| Entries     |        |           |            |            |                        |        |        |         | June-    |          |        |        |       |          |           | Aug-    | Oct-                |        |
| Littles     | -      |           | June-14    |            | Oct-14                 |        | Feb-14 | Apr-14  | 14       | Aug-14   | Oct-14 | Pooled |       | _        | 14        | 14      | 14                  | Pooled |
|             |        | Seedlings | fresh weig | ght (mg 10 | seedling <sup>-1</sup> | )      |        |         | oot fres | h weight | ratio  |        | ]     | Root dry | weight (1 | mg 10 r | oot <sup>-1</sup> ) | _      |
| GHB 719     | 316.50 | 301.25    | 294.25     | 292.00     | 286.75                 | 298.15 | 0.26   | 0.23    | 0.22     | 0.22     | 0.22   | 0.23   | 12.75 | 12.00    | 11.00     | 9.81    | 9.81                | 11.08  |
| 95222 A     | 286.75 | 272.50    | 267.50     | 265.25     | 259.25                 | 270.25 | 0.20   | 0.16    | 0.15     | 0.16     | 0.15   | 0.16   | 9.25  | 7.25     | 6.88      | 5.81    | 5.81                | 7.00   |
| J 2454      | 250.75 | 237.50    | 229.25     | 223.50     | 318.50                 | 251.90 | 0.15   | 0.13    | 0.12     | 0.10     | 0.07   | 0.11   | 7.50  | 5.60     | 4.82      | 3.93    | 3.91                | 5.15   |
| GHB 905     | 372.25 | 361.25    | 358.25     | 349.75     | 342.75                 | 356.85 | 0.16   | 0.17    | 0.17     | 0.16     | 0.15   | 0.16   | 12.25 | 9.25     | 8.56      | 7.85    | 7.85                | 9.15   |
| 04999 A     | 302.00 | 284.00    | 280.25     | 275.75     | 267.50                 | 281.90 | 0.20   | 0.19    | 0.18     | 0.17     | 0.16   | 0.18   | 9.50  | 7.50     | 6.81      | 5.94    | 5.94                | 7.14   |
| GHB 744     | 383.00 | 381.50    | 368.00     | 365.00     | 359.00                 | 371.30 | 0.25   | 0.26    | 0.22     | 0.23     | 0.22   | 0.23   | 14.25 | 11.25    | 10.09     | 8.81    | 9.06                | 10.69  |
| 98444 A     | 246.25 | 240.25    | 234.75     | 228.5      | 224.25                 | 274.75 | 0.18   | 0.18    | 0.17     | 0.16     | 0.15   | 0.15   | 10.25 | 8.63     | 7.84      | 6.91    | 6.91                | 8.11   |
| J 2340      | 253.50 | 243.25    | 236.50     | 235.25     | 226.75                 | 239.05 | 0.15   | 0.13    | 0.12     | 0.11     | 0.11   | 0.12   | 6.25  | 6.06     | 4.91      | 4.45    | 4.45                | 5.22   |
| GHB 732     | 317.25 | 316.25    | 311.25     | 303.75     | 298.00                 | 309.30 | 0.20   | 0.22    | 0.21     | 0.21     | 0.20   | 0.21   | 11.25 | 9.18     | 8.89      | 7.78    | 7.78                | 8.98   |
| 96222 A     | 260.75 | 250.50    | 245.25     | 237.00     | 230.75                 | 244.85 | 0.19   | 0.16    | 0.15     | 0.14     | 0.12   | 0.15   | 8.75  | 6.82     | 5.91      | 4.75    | 4.88                | 6.22   |
| Mean        | 298.90 | 288.83    | 282.53     | 277.5      | 271.35                 |        | 0.192  | 0.182   | 0.169    | 0.158    | 0.149  |        | 10.20 | 8.35     | 7.57      | 6.61    | 6.64                |        |
| S.Em.±      | 2.00   | 2.32      | 1.55       | 2.56       | 2.56                   | 9.78   | 0.005  | 0.005   | 0.003    | 0.003    | 0.003  | 0.006  | 0.39  | 0.34     | 0.17      | 0.17    | 0.17                | 0.19   |
| C.D. at 5 % | 5.78   | 6.70      | 4.48       | 7.38       | 6.27                   | 28.08  | 0.015  | 0.01    | 0.010    | 0.009    | 0.013  | 0.017  | 1.12  | 0.99     | 0.50      | 0.50    | 0.48                | 0.54   |
| C.V. %      | 1.34   | 1.61      | 1.10       | 1.78       | 1.49                   | 1.48   | 5.660  | 5.69    | 4.35     | 4.28     | 6.24   | 5.34   | 7.59  | 8.20     | 4.58      | 5.21    | 5.05                | 6.77   |
| D           |        |           |            |            |                        |        |        |         |          |          |        |        |       |          |           |         |                     | •      |
| S.Em.±      |        |           |            |            |                        | 6.92   |        |         |          |          |        | 0.004  |       |          |           |         |                     | 0.13   |
| C.D. at 5 % |        |           |            |            |                        | NS     |        |         |          |          |        | 0.012  |       |          |           |         |                     | 0.38   |
| D×E         |        |           |            |            |                        |        |        |         |          |          |        |        |       |          |           |         |                     |        |
| S.Em.±      |        |           |            |            |                        | 2.15   |        |         |          |          |        | 0.004  |       |          |           |         |                     | 0.27   |
| C.D. at 5 % |        |           |            |            |                        | 6.01   |        |         |          |          |        | 0.012  |       |          |           | _       |                     | 0.75   |

Table 6: Shoot dry weight (mg 10 shoot<sup>-1</sup>), seedling dry weight (mg 10 seedling<sup>-1</sup>) and root/shoot dry weight ratio in seeds of pearl millet entries (four hybrids and their respective parents) after different periods of storage

|             |        |          |          |          |                      |        |        | Γ         | Dates of s | ampling  |                      |       |        |        |            |          |        |        |
|-------------|--------|----------|----------|----------|----------------------|--------|--------|-----------|------------|----------|----------------------|-------|--------|--------|------------|----------|--------|--------|
| Entries     |        |          |          |          |                      |        |        |           | June-      |          |                      |       |        |        |            |          |        |        |
| Entries     | Feb-14 | Apr-14   | June-14  | Aug-14   | Oct-14               | Pooled |        | Apr-14    |            |          |                      |       | Feb-14 | Apr-14 | June-14    | Aug-14   | Oct-14 | Pooled |
|             |        | Shoot dr | y weight | (mg 10 s | hoot <sup>-1</sup> ) |        | See    | dling dry | weight (   | mg 10 se | edling <sup>-1</sup> | )     |        | Root   | /shoot dry | weight r | atio   |        |
| GHB 719     | 81.25  | 80.50    | 79.25    | 77.56    | 73.75                | 78.46  | 94.00  | 92.50     | 90.38      | 87.38    | 83.44                | 89.54 | 0.16   | 0.15   | 0.14       | 0.13     | 0.13   | 0.14   |
| 95222 A     | 60.75  | 58.00    | 56.00    | 53.75    | 51.25                | 55.95  | 70.00  | 65.25     | 62.88      | 59.56    | 57.06                | 62.95 | 0.15   | 0.12   | 0.12       | 0.11     | 0.11   | 0.12   |
| J 2454      | 71.25  | 65.50    | 61.75    | 60.25    | 55.75                | 62.90  | 78.75  | 71.10     | 67.07      | 64.16    | 59.66                | 68.15 | 0.11   | 0.09   | 0.08       | 0.07     | 0.07   | 0.08   |
| GHB 905     | 87.25  | 84.75    | 57.75    | 53.00    | 52.50                | 67.05  | 99.50  | 94.00     | 66.31      | 60.85    | 60.35                | 76.20 | 0.14   | 0.11   | 0.15       | 0.15     | 0.15   | 0.14   |
| 04999 A     | 60.50  | 57.75    | 56.75    | 52.75    | 50.75                | 55.70  | 70.00  | 65.25     | 63.56      | 58.69    | 56.69                | 62.84 | 0.16   | 0.13   | 0.12       | 0.11     | 0.12   | 0.13   |
| GHB 744     | 91.25  | 88.50    | 87.25    | 83.75    | 81.50                | 86.45  | 105.50 | 99.75     | 97.34      | 92.56    | 90.31                | 97.09 | 0.16   | 0.13   | 0.12       | 0.11     | 0.11   | 0.12   |
| 98444 A     | 69.75  | 66.75    | 64.50    | 61.75    | 60.50                | 64.65  | 80.00  | 75.38     | 72.34      | 68.66    | 67.41                | 72.76 | 0.15   | 0.13   | 0.12       | 0.11     | 0.11   | 0.12   |
| J 2340      | 69.25  | 69.25    | 67.75    | 64.00    | 61.00                | 66.25  | 75.50  | 75.31     | 72.66      | 68.45    | 65.45                | 71.47 | 0.09   | 0.09   | 0.07       | 0.07     | 0.07   | 0.08   |
| GHB 732     | 80.25  | 79.25    | 77.75    | 74.00    | 66.25                | 75.50  | 91.50  | 88.43     | 86.64      | 81.78    | 74.03                | 84.48 | 0.14   | 0.12   | 0.11       | 0.11     | 0.12   | 0.12   |
| 96222 A     | 69.50  | 68.25    | 65.75    | 61.25    | 61.00                | 65.15  | 78.25  | 75.07     | 71.66      | 66.13    | 65.88                | 71.40 | 0.13   | 0.10   | 0.09       | 0.08     | 0.08   | 0.09   |
| Mean        | 74.10  | 71.85    | 67.45    | 64.21    | 61.43                |        | 84.30  | 80.20     | 75.08      | 70.82    | 68.03                |       | 0.14   | 0.12   | 0.11       | 0.10     | 0.11   |        |
| S.Em.±      | 0.90   | 0.56     | 0.54     | 0.36     | 0.36                 | 2.06   | 1.08   | 0.69      | 0.54       | 0.43     | 0.43                 | 2.11  | 0.003  | 0.004  | 0.001      | 0.002    | 0.002  | 0.004  |
| C.D. at 5 % | 2.61   | 1.61     | 1.56     | 1.03     | 2.72                 | 5.92   | 3.11   | 2.00      | 1.57       | 1.25     | 2.71                 | 6.05  | 0.011  | 0.011  | 0.005      | 0.006    | 0.007  | 0.012  |
| C.V. %      | 2.44   | 1.56     | 1.60     | 1.11     | 3.07                 | 2.06   | 2.56   | 1.73      | 1.44       | 1.22     | 2.76                 | 2.05  | 5.53   | 7.15   | 3.35       | 4.69     | 4.68   | 5.34   |
| D           |        |          |          |          |                      |        |        |           |            |          |                      |       |        |        |            |          |        |        |
| S.Em.±      |        |          |          |          |                      | 1.46   |        |           |            |          |                      | 1.49  |        |        |            |          |        | 0.003  |
| C.D. at 5 % |        |          |          |          |                      | 4.19   |        |           |            |          |                      | 4.28  |        |        |            |          |        | 0.087  |
| D×E         |        |          |          |          |                      |        |        |           |            |          |                      |       |        |        |            |          |        |        |
| S.Em.±      |        |          |          |          |                      | 0.70   |        |           |            |          |                      | 0.78  |        |        |            |          |        | 0.003  |
| C.D. at 5 % |        |          |          |          |                      | 1.96   |        |           |            |          |                      | 2.17  |        |        |            |          |        | 0.008  |

Table 7: Root moisture (%), shoot moisture (%) and seedling moisture (%) in seeds of pearl millet entries (four hybrids and their respective parents) after different periods of storage

|             |        |        |          |          |        |        |        |       | Dates of | sampling | g     |        |        |       |           |           |       |        |
|-------------|--------|--------|----------|----------|--------|--------|--------|-------|----------|----------|-------|--------|--------|-------|-----------|-----------|-------|--------|
| Entries     |        |        |          |          |        |        |        |       | June-    |          |       |        |        |       |           |           |       |        |
| Litties     | Feb-14 | Apr-14 | June-14  | Aug-14   | Oct-14 | Pooled | Feb-14 |       |          |          |       | Pooled | Feb-14 |       | June-14   |           |       | Pooled |
|             |        | R      | oot mois | ture (%) |        |        |        | Sh    | oot mois | ture (%) |       |        |        | Se    | edling mo | isture (% | )     |        |
| GHB 719     | 80.44  | 78.87  | 79.64    | 81.31    | 80.65  | 80.18  | 67.70  | 67.08 | 67.01    | 67.60    | 68.75 | 67.63  | 74.07  | 72.97 | 73.33     | 74.46     | 74.70 | 73.90  |
| 95222 A     | 80.32  | 80.85  | 79.68    | 83.75    | 82.65  | 81.45  | 74.66  | 75.29 | 76.01    | 76.57    | 77.30 | 75.97  | 77.49  | 78.07 | 77.85     | 80.16     | 79.97 | 78.71  |
| J 2454      | 76.57  | 79.84  | 80.32    | 81.71    | 79.66  | 79.62  | 67.43  | 68.77 | 69.84    | 72.71    | 79.21 | 71.59  | 72.00  | 74.30 | 75.08     | 77.21     | 79.43 | 75.60  |
| GHB 905     | 76.57  | 82.32  | 83.13    | 83.48    | 82.00  | 81.50  | 72.74  | 72.57 | 81.22    | 82.46    | 82.44 | 78.29  | 74.65  | 77.44 | 82.18     | 82.97     | 82.22 | 79.89  |
| 04999 A     | 80.91  | 83.25  | 83.97    | 85.24    | 83.70  | 83.41  | 76.02  | 75.86 | 76.13    | 77.60    | 78.03 | 76.73  | 78.46  | 79.55 | 80.05     | 81.42     | 80.86 | 80.07  |
| GHB 744     | 81.10  | 85.66  | 84.93    | 86.99    | 85.89  | 84.91  | 70.33  | 70.77 | 71.01    | 71.82    | 72.35 | 71.26  | 75.71  | 78.21 | 77.97     | 79.41     | 79.12 | 78.09  |
| 98444 A     | 72.47  | 76.38  | 76.41    | 77.70    | 76.71  | 75.93  | 66.63  | 67.24 | 67.99    | 79.22    | 79.45 | 72.11  | 69.55  | 71.81 | 72.20     | 73.20     | 72.80 | 74.02  |
| J 2340      | 81.42  | 78.15  | 79.94    | 80.26    | 80.62  | 80.08  | 70.03  | 67.87 | 68.04    | 69.19    | 70.02 | 69.03  | 75.72  | 73.01 | 73.99     | 74.72     | 75.32 | 74.55  |
| GHB 732     | 79.00  | 83.98  | 83.69    | 85.03    | 84.03  | 83.15  | 69.55  | 69.40 | 69.71    | 70.60    | 73.43 | 70.54  | 74.27  | 76.69 | 76.70     | 77.82     | 78.73 | 76.84  |
| 96222 A     | 78.80  | 80.09  | 81.49    | 83.23    | 80.83  | 80.89  | 68.30  | 68.44 | 69.17    | 70.66    | 70.28 | 69.37  | 73.55  | 74.27 | 75.33     | 76.95     | 75.55 | 75.13  |
| Mean        | 78.76  | 80.94  | 81.32    | 82.87    | 81.67  |        | 70.34  | 70.33 | 71.61    | 73.84    | 75.13 |        | 74.55  | 75.63 | 76.47     | 78.36     | 78.40 |        |
| S.Em.±      | 0.586  | 0.491  | 0.366    | 0.485    | 0.485  | 0.561  | 0.38   | 0.13  | 0.27     | 0.79     | 0.79  | 1.10   | 0.36   | 0.24  | 0.22      | 0.49      | 0.49  | 0.67   |
| C.D. at 5 % | 1.694  | 1.420  | 1.059    | 1.400    | 2.445  | 1.611  | 1.10   | 0.38  | 0.77     | 2.28     | 1.93  | 3.15   | 1.04   | 0.70  | 0.62      | 1.42      | 1.53  | 1.92   |
| C.V. %      | 1.490  | 1.22   | 0.9      | 1.17     | 2.07   | 1.43   | 1.09   | 0.37  | 0.74     | 2.14     | 1.78  | 1.41   | 0.97   | 0.64  | 0.56      | 1.26      | 1.36  | 1.02   |
| D           |        |        |          |          |        |        |        |       |          |          |       |        |        |       |           |           |       |        |
| S.Em.±      |        |        |          |          |        | 0.396  |        |       |          |          |       | 0.78   |        |       |           |           |       | 0.47   |
| C.D. at 5 % |        |        |          |          |        | 1.139  |        |       |          |          |       | 2.23   |        |       |           |           |       | 1.36   |
| D×E         |        |        |          |          |        |        |        |       |          |          |       |        |        |       |           |           |       |        |
| S.Em.±      |        |        |          |          |        | 0.578  |        |       |          |          |       | 0.51   |        |       |           |           |       | 0.39   |
| C.D. at 5 % |        |        |          |          |        | 1.619  |        |       |          |          |       | 1.43   |        |       |           |           |       | 1.09   |

Table 8: Mobilization efficiency (%), vigour index I after 7 days of germination and vigour index II after 7 days of germination in seeds of pearl millet entries (four hybrids and their respective parents) after different periods of storage

|             |        |        |            |           |        |        |         |            | Da          | tes of sam  | oling    |         |          |            |            |             |          |         |
|-------------|--------|--------|------------|-----------|--------|--------|---------|------------|-------------|-------------|----------|---------|----------|------------|------------|-------------|----------|---------|
| Entries     | Feb-14 | Apr-14 | June-14    | Aug-14    | Oct-14 | Pooled | Feb-14  | Apr-14     | June-14     | Aug-14      | Oct-14   | Pooled  | Feb-14   | Apr-14     | June-14    | Aug-14      | Oct-14   | Pooled  |
|             |        | Mobil  | ization ef | iciency ( | (%)    |        | V       | igour inde | x I after 7 | days of ger | mination |         | Vi       | gour index | II after 7 | days of ger | mination |         |
| GHB 719     | 14.07  | 12.98  | 12.01      | 11.52     | 10.39  | 11.67  | 1249.76 | 1214.80    | 1245.18     | 1150.43     | 924.99   | 1157.03 | 8259.50  | 7844.50    | 7118.63    | 6204.88     | 5403.94  | 6966.29 |
| 95222 A     | 10.75  | 10.22  | 9.32       | 8.76      | 7.50   | 9.30   | 1475.03 | 1125.74    | 963.76      | 1016.10     | 831.80   | 1082.49 | 5898.75  | 5237.50    | 4669.75    | 3976.94     | 3510.50  | 4658.69 |
| J 2454      | 11.47  | 9.96   | 8.89       | 8.77      | 7.48   | 9.31   | 1538.45 | 1162.17    | 906.56      | 987.31      | 825.45   | 1083.99 | 6382.25  | 5973.90    | 4729.43    | 4331.33     | 3777.94  | 5038.97 |
| GHB 905     | 14.01  | 13.21  | 8.65       | 8.04      | 7.39   | 10.25  | 1453.33 | 1496.71    | 1276.66     | 1297.30     | 1086.10  | 1322.02 | 9280.00  | 8531.75    | 5654.38    | 4869.33     | 4438.68  | 6554.83 |
| 04999 A     | 9.62   | 8.70   | 8.25       | 7.42      | 6.85   | 8.16   | 1426.87 | 1285.06    | 1116.14     | 989.06      | 884.28   | 1140.28 | 5915.50  | 5269.50    | 4796.88    | 4152.52     | 3899.72  | 4806.82 |
| GHB 744     | 15.50  | 14.33  | 13.22      | 12.57     | 11.54  | 13.43  | 1949.43 | 1746.90    | 1303.00     | 1242.45     | 1071.49  | 1462.65 | 10261.75 | 9304.25    | 8470.52    | 7267.38     | 6572.31  | 8375.24 |
| 98444 A     | 13.03  | 11.20  | 10.48      | 9.81      | 9.19   | 10.74  | 1548.22 | 1445.61    | 1028.87     | 1178.84     | 1025.38  | 1245.38 | 7001.25  | 6351.13    | 5625.24    | 5030.05     | 4653.04  | 5732.14 |
| J 2340      | 11.17  | 11.15  | 9.86       | 9.25      | 8.36   | 9.95   | 1537.52 | 1321.19    | 1205.29     | 1187.76     | 968.65   | 1244.08 | 6404.50  | 6119.81    | 5324.42    | 4966.66     | 4222.24  | 5407.53 |
| GHB 732     | 13.03  | 12.16  | 11.28      | 10.57     | 9.01   | 11.20  | 1669.88 | 1084.86    | 1320.13     | 1108.61     | 933.92   | 1223.48 | 8168.75  | 7119.75    | 6650.00    | 5807.46     | 4818.73  | 6512.94 |
| 96222 A     | 10.74  | 9.94   | 9.15       | 8.54      | 8.07   | 9.28   | 1801.08 | 1213.15    | 824.60      | 907.84      | 826.08   | 1114.55 | 6965.75  | 6344.69    | 5662.43    | 4548.38     | 4447.25  | 5593.70 |
| Mean        | 12.34  | 11.38  | 10.11      | 9.53      | 8.32   |        | 1564.96 | 1309.62    | 1119.02     | 1106.57     | 937.81   |         | 7453.80  | 6809.68    | 5870.17    | 5115.49     | 4574.44  |         |
| S.Em.±      | 2.60   | 2.12   | 1.75       | 1.36      | 1.36   | 3.38   | 88.64   | 66.17      | 31.86       | 48.42       | 48.42    | 57.96   | 192.13   | 138.28     | 118.45     | 126.00      | 126.00   | 200.81  |
| C.D. at 5 % | 7.51   | 6.11   | 5.06       | 3.94      | NS     | 9.70   | 255.98  | 191.09     | 92.00       | 139.84      | 123.24   | 166.37  | 554.84   | 399.32     | 342.06     | 363.87      | 393.71   | 576.44  |
| C.V. %      | 4.21   | 3.72   | 3.46       | 2.87      | 19.50  | 8.00   | 11.33   | 10.11      | 5.69        | 8.75        | 9.10     | 9.77    | 5.16     | 4.06       | 4.04       | 4.93        | 5.96     | 4.85    |
| D           |        |        |            |           |        |        |         |            |             |             |          |         |          |            |            |             |          |         |
| S.Em.±      |        |        | 2.3        | 19        |        |        |         |            | 40          | .98         |          |         |          |            | 141        | .99         |          |         |
| C.D. at 5 % |        |        | 6.8        | 36        |        |        |         |            | 117         | 7.64        |          |         |          |            | 407        | .60         |          |         |
| D×E         |        |        |            |           |        |        |         |            |             |             |          |         |          |            |            |             |          |         |
| S.Em.±      |        |        | 4.1        | .3        |        |        |         |            | 59          | .02         |          |         |          |            | 144        | .59         |          |         |
| C.D. at 5 % |        |        | 11.        | 57        |        |        |         |            | 165         | 5.26        |          |         |          |            | 404        | .87         |          |         |

\_\_\_\_\_\_\_

Table 9: Field emergence first count (%) after 3 days, field emergence final count (%) after 7 days and field emergence rate index in seeds of pearl millet entries (four hybrids and their respective parents) after different periods of storage

|             |        |        |       |            |       |        |        |       | Dates of | f samplin  | g     |        |        |        |          |       |        |        |
|-------------|--------|--------|-------|------------|-------|--------|--------|-------|----------|------------|-------|--------|--------|--------|----------|-------|--------|--------|
|             |        |        |       |            |       |        |        |       | June-    |            |       |        |        |        |          |       |        |        |
| Entries     | Feb-14 | Apr-14 |       |            |       | Pooled | Feb-14 | _     |          | Aug-14     |       | Pooled | Feb-14 | Apr-14 | June-14  |       | Oct-14 | Pooled |
|             |        |        |       | gence firs |       |        |        |       |          | gence fina |       |        |        |        | Field em |       |        |        |
|             |        |        |       | fter 3 day |       |        |        |       |          | fter 7 day |       |        |        |        | rate ii  |       | 1      |        |
| GHB 719     | 78.00  | 64.00  | 62.00 | 37.25      | 32.75 | 54.80  | 83.75  | 81.00 | 76.50    | 75.00      | 47.50 | 72.75  | 27.44  | 25.58  | 24.29    | 21.85 | 14.60  | 22.75  |
| 95222 A     | 83.25  | 59.25  | 57.75 | 30.00      | 25.50 | 51.15  | 91.75  | 83.00 | 66.25    | 61.75      | 47.50 | 70.05  | 29.88  | 25.69  | 21.38    | 17.94 | 14.00  | 21.78  |
| J 2454      | 81.50  | 63.00  | 54.50 | 35.00      | 32.00 | 53.20  | 81.50  | 81.00 | 66.50    | 62.00      | 49.75 | 68.15  | 27.17  | 25.50  | 21.17    | 18.42 | 15.10  | 21.47  |
| GHB 905     | 83.00  | 70.75  | 66.00 | 38.25      | 34.75 | 58.55  | 95.25  | 82.50 | 67.25    | 60.75      | 51.25 | 71.40  | 30.73  | 26.52  | 22.31    | 18.38 | 15.71  | 22.73  |
| 04999 A     | 82.25  | 64.00  | 47.75 | 35.75      | 33.25 | 52.60  | 91.75  | 79.00 | 62.00    | 62.00      | 47.50 | 68.45  | 29.79  | 25.08  | 19.48    | 18.48 | 14.65  | 21.50  |
| GHB 744     | 84.25  | 62.75  | 67.75 | 36.75      | 36.25 | 57.55  | 92.75  | 82.50 | 72.25    | 69.50      | 51.75 | 73.75  | 30.21  | 25.85  | 23.71    | 20.44 | 15.96  | 23.23  |
| 98444 A     | 86.25  | 60.00  | 48.00 | 35.00      | 28.75 | 51.60  | 91.75  | 83.75 | 63.00    | 59.00      | 47.50 | 69.00  | 30.13  | 25.94  | 19.75    | 17.67 | 14.27  | 21.55  |
| J 2340      | 84.50  | 67.00  | 43.00 | 37.75      | 31.75 | 52.80  | 91.50  | 81.50 | 63.00    | 59.75      | 47.25 | 68.60  | 29.92  | 25.96  | 19.33    | 18.08 | 14.46  | 21.55  |
| GHB 732     | 89.75  | 71.00  | 66.25 | 39.50      | 37.75 | 60.85  | 97.00  | 84.25 | 72.25    | 70.00      | 49.75 | 74.65  | 31.73  | 26.98  | 23.58    | 20.79 | 15.58  | 23.73  |
| 96222 A     | 82.75  | 67.00  | 40.75 | 33.50      | 30.25 | 50.85  | 88.75  | 80.75 | 57.25    | 54.50      | 41.75 | 64.60  | 29.08  | 25.77  | 17.71    | 16.42 | 12.96  | 20.39  |
| Mean        | 83.55  | 64.88  | 55.38 | 35.88      | 32.30 |        | 90.58  | 81.93 | 66.63    | 63.43      | 48.15 |        | 29.61  | 25.89  | 21.27    | 18.85 | 14.73  |        |
| S.Em.±      | 1.03   | 1.03   | 1.39  | 1.55       | 1.55  | 2.10   | 0.88   | 0.68  | 1.08     | 0.93       | 0.93  | 1.70   | 0.30   | 0.24   | 0.38     | 0.34  | 0.34   | 0.53   |
| C.D. at 5 % | 2.99   | 2.96   | 4.02  | 4.47       | 2.51  | 6.02   | 2.55   | 1.96  | 3.12     | 2.69       | 2.45  | 4.89   | 0.86   | 0.68   | 1.08     | 0.98  | 0.79   | 1.51   |
| C.V. %      | 2.48   | 3.16   | 5.03  | 8.63       | 5.39  | 4.42   | 1.95   | 1.66  | 3.24     | 2.94       | 3.53  | 2.55   | 2.02   | 1.83   | 3.53     | 3.62  | 3.70   | 2.80   |
| D           |        |        |       |            |       |        |        |       |          |            |       |        |        |        |          |       |        |        |
| S.Em.±      |        |        |       |            |       | 1.48   |        |       |          |            |       | 1.20   |        |        |          |       |        | 0.37   |
| C.D. at 5 % |        |        |       |            |       | 4.26   |        |       |          |            |       | 3.46   |        |        |          |       |        | 1.07   |
| D×E         |        |        |       |            |       |        |        |       |          |            |       |        |        |        |          |       |        |        |
| S.Em.±      |        |        |       |            |       | 1.20   |        |       |          |            |       | 0.89   |        |        |          |       |        | 0.31   |
| C.D. at 5 % |        |        |       |            |       | 3.36   |        |       |          | -          |       | 2.50   |        |        |          | -     | -      | 0.86   |

[MS received: August 19, 2015]

[MS accepted September17, 2015]