GENETIC VARIABILITY FOR QUANTITATIVE CHARACTERS UNDER DIFFERENT SOWING CONDITION IN BREAD WHEAT (*Triticum aestivum* L.)

¹RANOLIYA P. D.; *²BHATIYA V. J.; ³TALPADA, M. M.AND ⁴KULKARNI,G. U.

DEPARTMENT OF GENETICS AND PLANT BREEDING JUNAGADH AGRICULTURAL UNIVERSITY JUNAGADH – 362 001, GUJATAT, INDIA

*EMAIL: vjbhatia@jau.in

¹M.Sc. (Agri.) Student, Department of Genetics and Plant Breeding, JAU, Junagadh – 362 001, Gujarat ²Professor and Head, Department of Seed Science and Technology, JAU, Junagadh – 362 001, Gujarat ³Asssitant Research Scientist, Main Dry farming Research Station, JAU, Taraghadiya, Gujarat

⁴Assistant Professor, Department of Genetics and Plant Breeding, JAU, Junagadh – 362 001, Gujarat

ABSTRACT

An experiment was conducted to evaluate fifty stable F_{68} genotypes of bread wheat for genetic variability. Analysis of variance revealed that mean squares due to genotypes were highly significant for all the characters. The high values of GCV was recorded for number of effective tillers per plant in early sowing, length of main spike in timely sowing and number of effective tiller per plant in late sowing. This indicated the presence of wide genetic variation for these characters. Similarly, high values of PCV was recorded for plant height, length of main spike, number of spikelets per main spike, peduncle length, grain yield per plant and harvest index in early sowing; for length of main spike, grain yield per plant and harvest index in timely sowing; and for number of effective tillers per plant, length of main spike, grain yield per plant and harvest index in late sowing condition. The high heritability (broad sense) values were observed for number of effective tillers per plant in early sowing, for length of main spike in timely sowing and grain filling period in late sowing, indicated that heritability may be due to higher contribution of genotypic component in these traits. The genetic advance expressed as percentage of mean were found high for number of effective tillers per plant in early sowing and for length of main spike in timely and late sowing condition.. The values of genotypic correlation were higher as compared to the corresponding phenotypic correlation, indicating that though there was high degree of association between two variables at genotypic level, its phenotypic expression was deflated by the influence of environment. The grain yield per plant exhibited significant and positive genotypic and phenotypic correlation with days to maturity, harvest index and 100 grain weight in early sowing; plant height, number of spikelets per main spike, length of main spike, biological yield and harvest index in timely sowing; and with days to maturity, plant height and number of grain per main spike in late sowing condition. The yield components exhibited varying trends of association among themselves. Thus, biological yield per plant, number of effective tillers per plant, plant height, number of spikelets per main spike, harvest index and days to maturity were the most important traits, which may contribute considerably towards higher grain yield.

KEY WORDS: Correlation, genetic variability, heritability, genetic advance, wheat.

INTRODUCTION

Wheat (Triticum spp. L.) is an annual plant that belongs to the grass family Poaceae, tribe Triticeae and subtribe Triticineae. It has been described as the 'King of cereals' because of the acreage it occupies, high productivity and the prominent position it holds in the international food grain trade. It is one of the most important and widely cultivated crops in the world, used mainly for human consumption and support nearly 35 per cent of the world population (Mohammadi-joo et al., 2015). It is a unique gift of nature to the mankind. Once wheat grain is converted into dough, it can be moulded innumerable products like chapatis, breads, cakes, biscuits, pasta and many hot and ready-to-eat breakfast foods. Wheat grain contains starch (60-68%), (6-21%),fat protein (1.5-2.0%),cellulose (2.0-2.5%), minerals (1.8%) vitamins (Das, 2008). phenotypic and genotypic variations of the yield contributing characters are considerably high in wheat [Dwivedi and Pawar (2004); Kumar et al. (2014)], which point out the possibility of developing a variety with high yield. Heritability is the heritable portion of phenotypic variation and it is a good index of transmission of a character from parents to their off springs. Heritability determines the expressivity of genes carried by a genotype. If the heritability of a character is high, the phenotypic value provides a fairly close measure of the genotypic value and thus, breeder can utilize the basis of his selection on the phenotypic performance, thereby the knowledge of heritability helps the plant breeder in pre-assessing the results of selection for a particular character.

Yield being a complex character is a function of several component characters and their interaction with environment. Probing of structure of yield involves assessment of mutual relationship among various characters contributing to the yield. In this regards, genotypic and phenotypic correlation reveals the degree of association between different characters and thus, aid in selection to improve the yield and yield attributing characters simultaneously.

MATERIALS AND METHODS

The present study was carried out to assess genetic variability in fifty stable F₆s genotypes of bread wheat grown as early (November 3, 2014), normal (December 23, 2014) and late sowing (January 15, 2015) condition in a Randomized Block Design with three replications at the Wheat Research Station, Junagadh Agricultural University, Junagadh during rabi 2014-15. Each entry was accommodated in a single row of 1.5 m length with a spacing of 22.5 cm. recommended agronomical practices and plant protection measures were followed for the successful raising of the crop. The observations recorded on 13 quantitative characters viz., days to 50 per cent flowering, days to maturity, grain filling period (day), plant height (cm), peduncle length (cm), number of effective tillers per plant, length of main spike (cm), number of spikelets per main spike, number of grains per main spike, 100 grain weight (g), grain yield per plant (g), biological yield per plant (g) and harvest index (%). Analysis of variance was carried out as per methodology given by Panse and Sukhatme (1985). The genotypic and phenotypic coefficients of variation, which measures the magnitude of and phenotypic genetic variation present in a particular character, were estimated as per the formula suggested by Burton and DeVane (1953). Heritability was calculated according

to formula suggested by Allard (1960). Genetic advance as percentage of mean was categorised as low, moderate and high as given by Johnson *et al.* (1955). The phenotypic and genotypic correlation coefficients of all the characters were worked-out as per Al-Jibouri *et al.* (1958).

RESULTS AND DISCUSSION

The analysis of variance revealed that mean square due to genotypes were significant for all the traits in individual sowing condition (Table 1) as well as pooled over years, except plant height (Table 2) indicating the presence of sufficient amount of genetic variability among genotypes for seed yield per plant and other yield contributing traits. These findings of mean sum of squares are in accordance with the findings of Asif et al. (2005), Dwivedi and Pawar (2004) and Malav (2015), who also observed variability significant in wheat germplasm. Hence, it can be noted that systematic crossing among selected genotypes in self-pollinated crop like wheat generates variability subsequent generation.

Genetic variability requisites for genetic improvement in a systematic breeding programme. There is more genetic potentiality in the genetically variable populations and thus the chances to obtain the desired types are increased. The estimates of genetic parameters are helpful for plant breeders to predict the performance of genotypes the subsequent in generations. So, it is necessary to split phenotypic variability the heritable and non-heritable components. The present experimental material showed a wide range of variation for plant height followed by number of grain per main spike, grain yield per plant, number of effective tillers per plant, days to maturity and grain filling period. The harvest index,

number of spikelet per main spike, days to 50 per cent flowering expressed a moderate range of variation (Table 3).

The better index for measuring the genetic variation is genetic coefficient of variation (GCV) described by Burton and De Vane (1953) for comparing the genetic variability present in different traits. Narrow difference between phenotypic and genotypic coefficient of variation in most of the characters indicated that they were comparatively stable to environmental variation. This also suggested that genetic factors were pre-dominantly responsible for the expression of these attributes and selection could be made effectively on the basis of phenotypic performance. However in certain cases like harvest index (%) and plant height (cm) has considerable difference between PCV and GCV. This clearly indicated the significant role of environmental factors in the expression of above said traits. It is a well-known fact that forced maturity may result due to sudden rise of temperature. estimates of genotypic and phenotypic coefficient of variability indicated that the values of phenotypic coefficient of variation were slightly higher than that of genotypic coefficient of variation for all the traits studied (Table 3), indicating less effect of environment on the expression of characters studied. Similar results have been reported by Dwivedi and Pawar (2004), Kumar et al. (2014), Desheva and Cholakov (2014) and Malay (2015).

In early sown, highest values of GCV were observed for number of effective tillers per plant followed by number of grains per main spike and harvest index (Table 3). High GCV estimates in wheat have been reported for number of effective tillers per plant (Dhakar *et al.*, 2012; Singh *et al.*,

2012: Tambe et al., 2013 and Malay, 2015). The moderate values of GCV were observed for number of grains per main spike, length of main spike and grain yield per plant. The findings of these characters are supported by earlier report of and Nukasani et al. (2013). In timely sown, highest values of GCV were observed for length of main spike followed by harvest index and grain yield per plant (Table 3). In late sown, highest value of GCV were found in harvest index followed by number of effective tillers per main spike and length of main (Table 3). The low value of GCV was observed for 100 grain weight, plant height, number of spikelet per main spike, grain filling period, days to maturity and days to 50 per cent flowering. The findings of these characters supported by earlier reports of Baranwal et al. (2012) and Desheva and Kyoshev (2015). In early sown, highest phenotypic coefficient of variation was observed for number of effective tillers per plant followed by number of grain per main spike, harvest index and grain yield per plant. The length of main spike, number of spikelet per main spike and plant height exhibited moderate value of phenotypic coefficient of variation, whereas grain filling period, 100 grain weight, days to maturity and days to 50 per cent flowering noted low values of phenotypic coefficient of variation. High estimates of PCV for grain yield per plant and some other yield in wheat were components reported by Tambe et al. (2013), Nukasani et al. (2013), Maurya et al. (2014), Desheva and Cholakov (2014), Desheva and Kvosev (2015) and Malay (2015). In timely sown, highest phenotypic coefficient of variance was found for number of spikelets per main spike followed by harvest index and grain yield per plant. In late sown,

highest phenotypic coefficient of variance was observed for harvest index followed by number of effective tillers per plant and length of main spike.

High heritability (broad sense) values were observed for number of effective tillers per plant, number of grains per main spike, days to 50 per cent flowering, number of spikelets per main spike and length of main spike in all three dates viz., early, timely and late sown, while moderate estimates for early sown were observed for length of main spike, plant height, number of spikelets per main spike, for timely sown, plant height and peduncle length and for late sown, plant height, biological yield and 100 grain weight noted moderate value. The characters like grain filling period, days to maturity, biological yield per plant and seed weight recorded 100 estimates of heritability in early sown. The high heritability values for number of effective tillers per plant, number of grains per main spike, days to 50 % flowering, number of spikelets per main spike and length of main spike in all three dates viz. early, timely and late sown, indicated that heritability may be due to higher contribution of genotypic component in these traits. High magnitude of heritability have been reported for number of effective tillers per plant (Sidharthan and Malik, 2007 and Dhakar et al., 2012), for number of grains per spike (Pawar et al., 2002; Pawar et al., 2002 and Sidharthan and Malik, 2007), Length of main spike (Pawar et al., 2002 and Sidharthan and Malik, 2007) and for days to 50 per cent flowering (Singh et al., 2001 and Pawar et al., 2002).

The genetic advance at 5% selection intensity (k=2.06) was found moderate for plant height in all three dates *viz*. early, timely and late sown, peduncle length in early and late sown,

number of grains per plant and number of grains per main spike in timely and late sown. It was low for all the remaining traits viz., grain filling period, grain yield per plant, length of main spike and 100 grain weight in all three dates viz., early, timely and late sown, number of spikelets per main spike in timely and late sown and biological yield in early and late sown. These results supported by the reports of some earlier researchers. Baisakh and Navak (1991) reported moderate genetic advance for plant height and days to heading and Kumar et al. (2014) for harvest index and test weight. Kumar and Luthra (1995) observed low genetic advance for yield per plant, number of spilelets per main spike, number of grains per spike, grain filling period, biological yield and Ahmed et al. (2010) for spike length.

The coefficient of variation does not offer full scope to estimate the heritable variation. The relative amount of heritable portion of variation is assessed with the help of heritability estimate and advance expressed as percentage of mean (genetic gain). The success of selection depends on the breeding value of a genotype recognized from its phenotypic expression. The degree of correspondence between phenotypic value and breeding value for a character is measured by heritability, which indicates reliability of the former as a guide to the later. The heritability expresses the proportion of total variance that is attributed to the average effect of genes and determines the degree of resemblance between relatives. It is a good index of transmission of characters from parents to their off-springs (Falconer, 1981). High values of heritability in broad sense are helpful in identifying the appropriate character for selection and

enabling the breeder to select superior genotypes on the basis of phenotypic expression of quantitative traits (Johnson *et al.*, 1955).

The genetic advance expressed as percentage of mean were found high for number of effective tillers per plant followed by, number of grains per main spike, harvest index and grain yield per plant, while moderate for grain filling period and biological yield per plant in early sown and low for days to maturity (Table 3). In timely sown, genetic advance expressed as percentage of mean were found high for length of main spike and number harvest index. The values of genetic advance expressed as percentage of mean were moderate for plant height, grain filling period, and days to maturity. In late sown, genetic advance expressed as percentage of mean were found high for length of main spike, number of effective tillers per plant and harvest index. The values of advance expressed genetic percentage of mean were moderate for grain filling period, days to maturity and 100 grain weight. High values of advance expressed genetic percentage of mean have been reported in wheat for grain yield per plant by Dhakar et al. (2012), Singh et al. (2012),Bhushan et al. (2013), Nukasani et al. (2013), Maurya et al. (2014) and Malay (2015); for number of effective tillers per plant by Kumar and Mishra (2004), Sidharthan and Malik (2007), Dhakar et al. (2012), Singh et al. (2012) and Malay (2015); for length of main spike by Dhakar et al. (2012), Nukasani et al. (2013), Desheva and Cholakov (2014),Desheva and Kvosev (2015) and Malay (2015); and for number of grains per main spike by Sidharthan and Malik (2007), Majumder et al. (2008) and Malay (2015).

High heritability with high advance expressed genetic percentage of mean was also reported earlier for number of effective tillers per plant in early and late sown by Kumar and Mishra (2004), Sidharthan and Malik (2007) and Dhakar et al. (2012); for number of spikelets per main spike, number of grains per main spike, peduncle length and harvest index by Dhakar et al. (2012), Tambe et al. (2013), Bhushan et al. (2013) and Degewione et al. (2013), for length of main spike, days to 50 per cent flowering, biological yield and grain vield per plant by Majumder et al. (2008), Dhakar et al. (2012), Bhushan et al. (2013) and Degewione et al. (2013) and for biological yield per plant by Sidharthan and Malik (2007), Bhushan et al. (2013) and Malav (2015).

Correlation among traits may result from pleiotrophy, linkage or physiological associations characters. The linkage is a cause of transit correlations particularly in a population derived from crosses strains. between divergent The correlation is the overall or net effect of the segregating genes; some of the genes may increase both the characters causing the positive correlation, while the others may increase the one and decrease the other causing the negative correlation (Falconer, 1981). Thus, to accumulate optimum combination of yield contributing characters in a single genotype, it is essential to know the implication of the interrelationship of various characters.

In general, the values of genotypic correlation were higher than their corresponding phenotypic correlation in the present investigation (Table 4). This indicated that though there was high degree of association between two variables at genotypic level, its phenotypic expression was

deflated by the influence environment. The study of genotypic correlation gives an idea of the extent relationship between different variables. This relationship among yield contributing characters as well as their associations with yield provides information for exercising selection pressure for bringing genetic improvement in seed yield.

In present investigation, seed vield per plant showed significant and positive correlation with plant height at genotypic level, 100 grain weight and harvest index in early sowing condition (D₁) (Table 4), while it had significant and positive correlation in timely sown condition (D₂) with plant height and number of spikelets per main spike at genotypic level, and with length of main spike, biological yield per plant and harvest index at both the levels. In late sowing condition (D₃) seed yield per plant showed significant and positive correlation with days to maturity, number of grains per main spike and plant height at genotypic level and harvest index. This indicated that importance of these traits as compliment of seed vield. significant and positive correlation of grain yield per plant with biological yield per plant also reported by Bhushan et al. (2013), Fellahi et al. (2013) and Malay (2015); with harvest index by Ahamed et al. (2010) and Zeeshan et al. (2014); and with days to maturity by Singh et al. (2012).

In present study, correlations among different characters were also significant over the environments. The yield components exhibited varying trends of association among themselves (Table 4). Days to 50% flowering recorded significant and negative association with grain filling period and 100 grain weight in late sowing condition (D_3) . Days maturity recorded ne gative and

significant correlation with plant height in early sown (D₁), peduncle length in late sown (D₂), and grain filling period and biological yield per plant at phenotypic level in late sown (D₃). Grain filling period recorded significant and positive association with number of grains per main spike in early sown (D_1) , number of spikelets per main spike at phenotypic level and significant but negatively correlated with peduncle length in timely sown (D₂). Plant height showed significant but negative correlation with number of effective tillers per plant and length of main spike in early sown (D_1) , number of spikelets per main spike and number of grains per main spike and length of main spike at genotypic level in timely sown (D₂) and peduncle length and 100 grain weight, number of spikelets per main spike phenotypic level, while it was positive and significant with harvest index in late sown (D_3) . Number of effective tillers per plant recorded positive and significant correlation with number of spikelets per main spike and 100 grain weight in timely sown (D₂), while number of spikelets per main spike at genotypic level in late sown (D₃). Length of main spike showed positive significant correlation number of spikelets per main spike, number of grains per main spike and peduncle length in early sown (D₁), while number of spikelets, number of grains per main spike at phenotypic level in timely sown (D₂) and number of grains per main spike at genotypic level in late sown (D₃). Number of spikelets per main spike recorded positive and significant correlation with number of grains per main spike and peduncle length at genotypic level in early sown (D₁), while number of grains per main spike in timely sown (D₂) and late sown (D₃). Singh et al. (1985) found significant and positive

correlation between spikelets per spike and grains per spike. Number of grains per main spike showed positive and significant correlation with harvest index in late sown (D₃). Peduncle length recorded significant negative correlation with harvest index at phenotypic level in late sown (D₃). Biological yield recorded positive and significant correlation with harvest index in early sown (D_1) . Similar results were found by Mohammad et al. (2005) reported significant and positive correlation between biological yield with harvest index, while its negative and significant correlation with harvest index in timely sown (D_2) and late sown (D_3) .

CONCLUSION

The present investigation, thus, revealed that moderate to heritability coupled with high genetic advance expressed as percentage of mean were observed for grain yield per plant, number of effective tillers per plant, biological yield per plant, length of main spike and number of grains per main spike, which may be attributed to the preponderance of additive gene action and possessed high selective value and thus, selection pressure could profitably be applied on these characters for their rationale improvement. Based on correlation analysis, it is concluded that harvest index, number of spikelets per main spike, length of main spike, biological yield per plant, plant height, 100 grain weight and number of grains per main spike may contribute considerably towards higher grain yield. The interrelationship among vield components would help in increasing the vield levels and, therefore, more emphasis should be given to these components, while selecting better types in wheat.

REFERENCES

- Ahamed, K. U.; Kamrun, N.; Fujita, M. and Mirza, H. (2010). Variation in plant growth, tiller dynamics and yield components of wheat (*Triticum aestivum* L.) due to high temperature stress. *AAB Bioflux*, **2**(3): 213-224.
- Al-Jibouri, H. A.; Miller, P. A. and Robinson, H. F. 1958. Genotypic and environmental variances in upland cotton cross of interspecific origin. *Agron. J.*, **50**: 633-635.
- Allard, R. W. 1960. Principles of Plant Breeding. John Willey and Sons, New York, USA.
- Asif, M.; Asim, M.; Mujahid, M. Y.; Mustafa, S. Z.; Kisana, N. S.; Ahmed, Z.; Ahmad, I. and Sohail, M. (2005). Analysis of wheat genotypes for yield stability in rainfed environments. *Pak. J. Biol. Sci.*, **6**: 509-511.
- Baisakh, B. and Nayak, S. K. (1991). Genetic variability and correlation studies of yield contributing characters in wheat. *Environ. Ecol.*, **9**(3): 694-696.
- Baranwal, D. K.; Mishra, V. K.; Vishwakarma, M. K.; Yadav, P. S. and Arun, B. (2012). Studies on genetic variability, correlation and path analysis for yield and yield contributing traits in wheat (*T. aestivum L.* emThell). *Pl. Arch.*, **12**(2): 99-104.
- Bhushan, B.; Bharti, Sonu.; Ojha, A.; Pandey, M.; Gourav, S. S.; Tyagi, B. S. and Singh, G. (2013). Genetic variability, correlation coefficient and path analysis of some quantitative traits in bread wheat. *J. Wheat Res.*, **5**(1): 21-26.

- Burton, G. M. and DeVane, E. M. (1953). Estimating heritability in tall Fescue from replication clonal material. *Agron. J.*, **45**: 478-481.
- Das, N. R. (2008). Wheat Crop Management. Scientific Publication, Jodhpur.
- Degewione, A.; Dejene, T. and Sharif, M. (2013). Genetic variability and traits association in bread wheat (*Triticum aestivum L.*) genotypes. *Int. Res. J. Agric. Sci.*, **1**(2): 19-29.
- Desheva, G. and Cholakov, T. (2014). Variability, heritability and genetic progress for some yield components in common winter wheat genotypes (*Triticum aestivum* L.). *Genet. Pl. Physiol.*, **4**(3-4): 191-200.
- Desheva, G. and Kyosev, B. (2015). Genetic diversity assessment of common winter wheat (*Triticum aestivum* L.). *Emir. J. Food Agric.*, **27**(3): 283-290.
- Dhakar, M. R.; Jat, B. L.; Bairwa, L. N. and Gupta, J. K. 2012. Genetic variability, heritability, genetic advance and genetic divergence in wheat (*Triticum* species). *Environ. Ecol.*, **30**(4): 1474-1480.
- Dwivedi, A. N. and Pawar, I. S. (2004). Evaluation of genetic diversity among bread wheat germplasm lines for yield and quality attributing traits. *Haryana Agric. Univ. J. Res.*, **34**: 35-39.
- Falconer, D. S. 1989. An Introduction to Quantitative Genetics. Longman, New York.
- Fellahi. Z.: Hannachi. A.: Guendouz. A.: Bouzeizour. H. and Boutekrabt, (2013).Genetic variability, heritability and association studies in wheat bread

- (Triticum aestivum L.) genotypes. Electronic J. Pl. Breed., **4**(2): 1161-1166.
- Johnson, H. W.; Robinson, H. F. and Comstock, R. E. (1955). Genotypic and phenotypic correlations and their implications in in soybeans. *Agron. J.*, **47**: 477-483.
- Kumar, J. and Luthra, O. P. (1995). Genetic variability for some quantitative characters in wheat. *Haryana Agric. Univ. J. Res.*, **25:** 1-4.
- Kumar, N.; Markar, S. and Kumar, V. (2014). Studies on heritability and genetic advance estimates in timely sown bread wheat (*Triticum aestivum* L.). *Biosci. Discov.*, **5**(1): 64-69.
- Kumar, P. and Mishra, Y. (2004).

 Genetic variability in wheat
 (Triticum aestivum L.).

 Proceedings of National
 Conference "Biodiversity and
 Sustainable Utilization of
 Biological Resources". Sagar,
 Madhya Pradesh, India, 16-18
 March, 2001, pp 144-149.
- Majumder, D. A. N.; Shamsuddin, A. K. M.; Kabir, M. A. and Hassan, L. (2008). Genetic variability, correlated response and path analysis of yield and yield contributing traits of spring wheat. *J. Bangladesh Agril. Univ.*, **6**(2): 227–234.
- Malay. A. K. (2015).Genetic variability, character association and diversity analysis bread wheat in (Triticum aestivum L.). M. Sc. (Agri.) Thesis (unpublished) submitted to Junagadh Agricultural University, Juna gadh.
- Maurya, M.; Chaurasia, A. K.; Kumar, A.; Maurya, C. L.; Bara, B. M.; Kumar, M. and Rai, P. K.

- (2014). Genetic variability for seed yield and its component characters in wheat (*Triticum aestivum* L.) under Allahabad agro climatic condition. *Int. J. Recent Develop. Engi. Tech.*, **2**(4): 124-126.
- Mohammad, T.; Haider, S.; Amin, M.; Khan, M. I. and Zamir, R. (2005). Path coefficient and correlation studies of yield and yield associated traits in candidate bread wheat (*Triticum aestivum L.*) lines. *Pakistan J. Agric. Res.*, 19: 232-239.
- Mohammadi-joo, S.; Mirasi, A.; Saeidi-aboeshaghi, R. and Amiri, M. (2015). Evaluation of bread wheat (*Triticum aestivum* L.) genotypes based on resistance indices under field conditions. *Int. J. Biosci.*, **6**(2): 331-337.
- Nukasani, V.; Potdukhe, N. R.; Bharad, Swati; Deshmukh, Shradha.and Shinde, S. M. (2013). Genetic variability, correlation and path analysis in wheat. J. Wheat Res., 5(2): 48-
- Panse, V. G. and Sukhatme, P. V. (1985). *Statistical Methods for Agricultural Workers*, ICAR, New Delhi.
- Pawar, S. V.; Patil, S. C.; Naik, R. M. and Jambhale, V. M. (2002). Genetic variability and heritability in wheat. *J. Maharashtra Agric. Univ.*, **27**(3): 324-325.
- Sidharthan, B. and Malik, S. K. (2007). Variability studies in wheat. *Int. J. Agric. Sci.*, **3**(1): 142-144.
- Singh, A. K.; Singh, S. B.; Singh, A. P. and Sharma, A. K. (2012). Genetic variability, character association and path analysis

- for seed yield and its component characters in wheat (*Triticum aestivum* L.) under rainfed environment. *Indian J. Agric. Res.*, **46**(1): 48-53.
- Singh, H. B.; Sharma, J. K. and Sethi, G. S. (1985). Correlation among different traits and their relative contribution to grain yield in wheat. *Himachal J. Agric. Res.*, **11:** 86-91.
- Singh, S. P.; Jha, P. B. and Singh, D. N. (2001). Genetic variability for polygenic traits in late sown wheat genotypes. *Annals Agril. Res.*, **22**(1): 34-36.
- Tambe, A.; Mehta, D. R.; Chovatia, V. P. and Bhatiya, V. J. (2013). Genetic variability, character association and path coefficient analysis in durum wheat (*Triticumdurum* Desf.). *Electronic J. Pl. Breed.*, **4**(4): 1303-1308.
- Zeeshan, M.; Arshad, W.; Khan, M. I.; Ali, S. and Tariq M. (2014). Character association and casual effects of polygenic traits in spring wheat (*Triticum aestivum* L.) genotypes, *Int. J. of Agric. Forestry and Fisheries*, **2**:16-21.

Table 1: Analysis of variance for different characters in 50 genotypes of bread wheat under three different sowing conditions (D_1 : Early sown condition; D_2 : Timely sown condition and D_3 : Late sown condition)

Source of	d. f.	Days to 50	Per Cent 1	Flowering	Days to Maturity			Grai	n Filling Pe	riod	Plant Height (cm)			
Variation	u. 1.	$\mathbf{D_1}$	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	$\mathbf{D_1}$	\mathbf{D}_2	\mathbf{D}_3	$\mathbf{D_1}$	\mathbf{D}_2	\mathbf{D}_3	
Replications	02	1.24	3.39	1.42	153.58**	158.79**	4.03	0.13	1.02	1.14	100.84	225.78**	11.77	
Genotypes	49	52.83**	39.25**	30.60**	28.18**	58.55**	46.20**	13.90**	16.43**	6.97**	172.26**	69.28**	17.12**	
Error	98	2.20	2.85	3.87	9.51	9.05	1.18	0.95	0.92	1.17	103.14	30.90	7.87	

Source of	d. f.	Number o	f Effective T Plant	Tillers Per	Length	of Main S pi	ke (cm)	Number	of Spikelets Spike	per Main	Number of Grains per Main Spike			
variation		$\mathbf{D_1}$	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	$\mathbf{D_1}$	\mathbf{D}_2	D_3	$\mathbf{D_1}$	\mathbf{D}_2	\mathbf{D}_3	
Replications	02	1.71**	0.18	0.71	1.17**	1.56**	0.26	2.48	2.26	0.34	0.21	5.11**	1.37	
Genotypes	49	32.24**	2.83**	5.58**	2.75**	4.18**	3.95**	8.80**	7.97**	8.95**	228.07**	79.39**	25.06**	
Error	98	0.05	0.21	1.08	0.07	0.26	0.06	0.71	1.44	0.30	3.03	9.31	0.83	

Source of	d.	Pedur	ncle Lengtl	h (cm)	Grain Yield Per Plant (g)			Biological Yield Per Plant (g)			Har	[%)	100 Grain Weight (g)			
variation	f.	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3	\mathbf{D}_1	\mathbf{D}_2	D_3	\mathbf{D}_1	\mathbf{D}_2	D_3	\mathbf{D}_1	\mathbf{D}_2	D_3	\mathbf{D}_1	\mathbf{D}_2	\mathbf{D}_3
Replications	02	23.99**	0.21	0.37	1.20	3.09	0.95	7.61	43.56**	0.02	6.71	25.20	6.30	0.13	0.19	0.07
Genotypes	49	44.01**	22.92**	25.06**	19.01**	15.10**	6.01**	19.18**	45.33**	21.46**	132.64**	108.95**	55.39**	0.21**	0.31**	0.16**
Error	98	1.58	6.46	0.83	3.25	1.03	1.23	5.12	3.84	5.14	5.12	13.42	12.74	0.05	0.08	0.07

^{*, **} Significant at 5% and 1% levels, respectively

Table 2: Analysis of variance showing mean sum of square for 13 characters in bread wheat over three dates

Source of Variation	d. f	Days to 50 Per Cent Flowering	Days to Maturity	Grain Filling Period	Plant Height (cm)	Number of Effective Tillers Per Plant	Length of Main Spike (cm)	Number of Spikelets per Main Spike
Environment	02	49.252**	3981.440**	219.041**	4061.589**	13.490**	25.107**	57.729**
Genotypes	49	32.934**	19.715**	9.135**	31.604	6.094	2.307**	5.162**
Genotypes x Environment	98	5.480**	12.297**	1.650**	27.308	3.728	0.660**	1.707**
Pooled error	294	0.991	2.194	0.338	15.767	0.148	0.043	0.272

Source of	d. f	Number of Grains	Peduncle Length	Grain Yield Per	Biological Yield	Harvest Index	100 Grain
Variation	a. 1	per Main Spike	(cm)	Plant (g)	Per Plant (g)	(%)	Weight (g)
Environment	02	954.578**	6.303**	674.565**	53.776**	97.364**	13.183**
Genotypes	49	65.363**	22.477**	7.223**	16.691**	44.882**	401.188**
Genotypes x Environment	98	31.287**	7.605**	3.076	5.980	27.007	9.558**
Pooled error	294	2.160	0.443	0.612	1.566	5.850	0.022

^{*, **} Significant at 5% and 1% levels, respectively

Table 3: Range of variation, mean, phenotypic and genotypic coefficients of variation, heritability (Broad Sense), genetic advance and genetic advance expressed as percentage of mean for different characters in 50 genotypes of bread wheat under early, timely and late sown conditions

Character	Range	Mean	Phenotypic Coefficient of Variation (%)	Genotypic Coefficient of Variation (%)	Heritability (Broad Sense)	Genetic Advance	Genetic Advance Expressed as Percentage of Mean
]	Early sown - D ₁				
Days to 50 Per Cent Flowering	46.60 to 64.60	56.12	13.13	12.86	95.95	14.56	25.95
Grain Filling Period	40.93 to 51.93	47.48	8.03	7.76	13.59	7.34	15.46
Days to Maturity	99.13 to 112.67	105.93	5.55	4.72	72.44	8.76	8.28
Plant Height (cm)	60.38 to 112.00	70.29	22.09	16.71	57.21	18.30	26.03
Number of Effective Tillers per Plant	3.80 to 17.13	8.87	64.02	63.97	99.85	11.69	82.52
Length of Main Spike (cm)	5.40 to 10.39	7.69	21.77	21.48	97.43	3.36	43.68
Number of Spikelet per Main Spike	11.53 to 19.67	15.20	20.03	19.25	92.32	5.79	38.09
Number of Grains per Main Spike	23.93 to 62.07	42.36	35.83	35.59	98.68	30.85	72.83
Peduncle Length (cm)	17.03 to 34.57	29.04	23.11	22.70	96.50	13.34	45.95
Grain Yield Per Plant (g)	10.65to 23.00	16.87	27.28	25.10	84.63	8.02	47.57
Biological Yield Per Plant (g)	34.47 to 46.88	39.56	12.01	10.56	77.31	7.57	19.14
Harvest Index (%)	28.05to 55.17	42.83	28.60	25.95	82.84	20.77	48.51
100 Grain Weight (g)	2.96 to 4.17	3.59	13.66	12.23	12.23	0.81	22.55
		T	$\frac{1}{2}$ ime ly $\frac{1}{2}$ Sown $ \frac{1}{2}$				
Days to 50 Per Cent Flowering	49.27 to 64.27	56.73	11.31	10.91	93.07	12.30	21.68
Grain Filling Period	40.93 to 53.47	47.79	8.64	8.40	94.57	8.04	16.83
Days to Maturity	91.40 to 113.33	106.00	7.58	7.03	85.98	14.23	13.43
Plant Height (cm)	70.33 to 92.71	84.42	11.23	9.09	65.62	12.82	15.80
Number of Effective Tillers per Plant	7.27 to 14.07	9.04	19.06	18.37	92.88	3.30	36.47
Length of Main Spike (cm)	6.63 to 12.92	8.94	23.35	22.65	94.07	4.04	45.25
Number of Spikelet per Main Spike	13.07 to 23.60	17.35	17.23	15.78	83.92	5.17	29.79
Number of Grains per Main Spike	32.13to 59.67	50.00	18.50	17.47	89.13	16.99	33.97
Peduncle Length (cm)	20.83 to 34.30	28.45	18.34	16.02	76.26	8.20	28.81

Table 3 Cont....

Grain Yield Per Plant (g)	14.73 to 26.77	18.88	21.04	20.35	93.50	7.65	40.53
Biological Yield Per Plant (g)	32.98 to 50.70	39.85	17.36	16.65	91.98	13.11	32.90
Harvest Index (%)	36.71 to 61.64	47.74	22.76	21.41	88.62	19.82	41.52
100 Grain Weight (g)	3.63 to 4.97	4.29	14.16	12.47	77.54	0.97	22.61
]	Late Sown – D ₃				
Days to 50 Per Cent Flowering	42.20 to 62.00	54.79	11.85	11.30	90.83	12.15	22.18
Grain Filling Period	40.53 to 48.80	42.02	6.33	5.83	84.92	4.87	11.06
Days to Maturity	82.20 to 100.73	106.00	7.57	7.47	97.49	13.78	15.21
Plant Height (cm)	61.79 to 73.22	67.67	6.99	5.63	64.83	6.32	9.33
Number of Effective Tillers per Plant	8.20 to 17.90	9.84	25.50	23.22	82.93	4.29	43.56
Length of Main Spike (cm)	6.78 to 13.02	8.89	22.46	22.29	98.55	4.05	45.58
Number of Spikelet per Main Spike	13.44 to 23.30	16.40	18.45	18.14	96.74	6.03	36.76
Number of Grains per Main Spike	32.47 to 49.86	49.86	18.04	17.23	91.22	16.89	32.89
Peduncle Length (cm)	19.24 to 34.22	28.43	17.80	17.51	96.75	10.09	35.48
Grain Yield Per Plant (g)	8.80 to 15.22	11.76	22.23	20.13	81.90	4.41	37.54
Biological Yield Per Plant (g)	31.94 to 45.13	37.93	13.15	11.72	79.35	8.15	21.50
Harvest Index (%)	22.82 to 41.58	31.21	25.61	22.91	80.05	13.18	42.23
100 Grain Weight (g)	2.73 to 3.72	3.30	13.74	11.24	66.95	0.62	18.95

Table 4: Genotypic (rg) and phenotypic (rp) correlation coefficients among 13 characters in 50 genotypes of bread wheat under early, timely and late sown conditions

Characters		Days to 50 Per Cent Flowering	Days to Maturity	Grain Filling Period	Plant Height (cm)	Number of Effective Tillers Per Plant	Length of Main Spike (cm)	Number of Spikelets per Main Spike	Number of Grains per Main Spike	Length	Grain Yield Per Plant (g)	Biological Yield Per Plant (g)	Harvest Index (%)
					Early	sown - D ₁							
	rg	0.0348	-0.2913*	-0.0538	0.2914*	0.0698	0.1060	0.0342	0.1230	0.0541	0.1902	0.9164**	0.9651**
Grain yield per plant (g)	rp	0.0243	-1.3347**	-0.0447	0.1757	0.0622	0.0914	0.0454	0.1138	0.0425	0.1709	0.9039**	0.9082**
Days to 50% flowering	rg		0.2913	0.2693	0.0027	0.0327	0.2345	0.0967	0.2000	0.1920	-0.1127	0.0768	-0.0395
Days to 30 /6 Howering	rp		0.2791	0.2619	0.0004	0.0320	0.2268	0.0939	0.1961	0.1884	-0.1046	0.0653	-0.0492
Days to maturity	rg			0.0051	-0.3887**	0.0492	0.1809	0.0396	0.0460	-0.0627	-0.1241	-0.1745	0.1395
Days to maturity	rp			0.0157	-0.7824**	0.0591	0.2180	0.0224	0.0508	0.0618	-0.1340	-0.2344	0.1746
Grain filling period	rg				0.0507	-0.0777	0.0913	-0.0122	0.2921**	-0.1947	0.0178	-0.0654	0.1614
or an ming period	rp				0.0755	-0.0828	0.0866	-0.0121	0.2880**	-0.2112	0.0260	-0.0761	0.1945
Plant height (cm)	rg					-0.3348**	-0.3737**	-0.0579	0.2756	-0.2343	0.1051	0.2307	-0.1102
Train height (Cm)	rp					-0.2858*	-0.2827*	-0.0540	0.1641	-0.1256	0.0146	0.1591	-0.0357
Number of effective tillers per	rg						0.0476	-0.0242	-0.1780	0.0410	-0.0354	0.1007	0.0893
plant	rp						0.0471	-0.0233	-0.1763	0.0393	-0.0327	0.0899	0.0780
Length of main spike (cm)	rg							0.2925*	0.4760**	0.3122**	0.0591	0.0756	-0.0599
Length of main space (cm)	rp							0.2881*	0.4667**	0.2994**	0.0487	0.0643	-0.0466
Number of spikelet per main spike	rg								0.4636**	-0.1712	0.3105**	-0.0941	3012**
Number of space per main space	rp								0.4251**	-0.1646	0.2671**	-0.0705	-0.2425
Number of grains per main spike	rg									0.0930	0.0903	-0.1540	-0.1440
Tumber of grains per main space	rp									0.0896	0.0727	-0.1372	-0.1260
Peduncle length (cm)	rg										-0.0817	0.0871	-0.0454
r councie length (cm)	rp										-0.0681	0.0714	-0.0488
Biological yield per plant (g)	rg											0.2949*	-0.1584
Diological field per patie (g)	rp											0.2912*	-0.1283
100 grain weight (g)	rg												-0.1307
100 grain weight (g)	rp												-0.0751

Table 4 Cont													
					Timely	$Sown - D_2$							
	rg	-0.0060	0.1445	-0.0460	0.3440**	0.1736	0.4103**	0.2792*	0.1344	0.1294	0.3922**	0.6447**	0.2121
Grain yield per plant (g)	rp	-0.0013	0.1304	-0.0386	0.2050	0.1715	0.3742**	0.2413	0.1184	0.1218	0.3598**	0.0762	-0.1616
Days to 50% flowering	rg		0.2228	0.1556	0.0077	0.0130	0.1176	0.0339	0.1709	0.1992	-0.1169	0.0838	0.0132
Days to 50% nowering	rp		0.1945	0.0166	-0.1230	0.0210	-0.0813	-0.0854	0.0156	-0.0741	-0.0417	0.0762	-0.0082
Days to maturity	rg			0.0155	-0.1842	0.0378	-0.1028	-0.1038	0.0140	-0.0916	-0.0415	0.2680	-0.2300
Days to maturity	rp			0.0166	-0.1082	-0.0874	0.1075	-0.1723	-0.1282	-0.3055**	0.0959	0.1876	-0.1674
Grain filling period	rg				-0.1506	-0.0939	0.1144	-0.2185	-0.1376	-0.3157**	0.1142	-0.1236	0.0091
Grain ming period	rp				-0.1082	0.1811	0.1047	0.3805**	0.2074	0.0047	0.1096	-0.1023	0.0099
Plant height (cm)	rg					0.2444	0.2862*	0.5750**	0.3889**	0.0075	0.1436	0.1872	0.1878
Fiant neight (Cm)	rp					0.1811	0.2577	0.5305**	0.3301**	-0.2083	0.1797	0.0839	0.1336
Number of effective tillers per	rg						0.2721	0.5852**	0.1581	-0.2177	0.2055	-0.0100	0.4705**
plant	rp						0.2577	0.3245**	0.0961	-0.0916	0.1268	0.0088	0.3937**
Length of main spike (cm)	rg							0.3831**	0.1258	-0.0925	0.1411	0.2723	-0.0637
Length of main space (cm)	rp							0.3245**	0.4249**	0.1088	0.1473	0.2403	-0.0458
Number of spikelet per main spike	rg								0.4934**	0.1290	0.1773	0.1068	0.0870
Number of spaceet per main space	rp								0.4249**	-0.0573	-0.0331	0.0947	0.1114
Number of grains per main spike	rg									-0.0655	-0.0432	0.1842	0.0459
Trumber of grains per main's pixe	rp									-0.0573	0.1072	0.1567	0.0053
Peduncle length (cm)	rg										0.1133	0.0353	-0.1085
Teduncie length (em)	rp										0.1072	0.0294	-0.0809
Biological yield per plant (g)	rg											-0.4451**	0.1864
Diological yiera per prant (g)	rp											-0.4681**	0.1338
100 grain weight (g)	rg												0.0652
	rp												0.0514
					Late S	$Sown - D_3$	T					T	Т
Grain yield per plant (g)		0.0871	0.2933*	-0.0835	0.4946**	-0.0644	0.1142	0.1453	0.3354**	0.0099	0.0308	0.8738**	0.2489
or an liera ber branc (8)		0.0559	-0.0764	-0.2539	-0.0198	0.1436	0.2190	0.2413	0.1162	0.0023	0.0051	0.8677**	0.2733

Table 4 Cont											
Days to 50% flowering	1.0001	-0.3143**	-0.0247	0.1800	0.2322	0.2613	0.1222	0.0065	-0.0211	0.0958	-0.4014**
Days to 50 % Howering	0.6800	-0.2564	0.0647	-0.1710	0.2230	-0.0836	0.1340	0.0159	0.2636	0.0991	-0.3294**
Days to maturity		-0.2873**	0.0848	-0.1892	0.2297	-0.0887	0.1459	0.0181	0.3052**	0.1006	-0.1787
Days to maturity		-0.2864*	0.0443	0.0507	0.0440	0.0757	-0.2056	-0.0446	-0.1993	0.1735	0.1703
Grain filling period			0.1004	0.0688	0.0535	0.0917	-0.2493	-0.0645	-0.2462	0.2065	0.2154
Grain ming period			0.0443	-0.1020	0.1307	0.0923	0.0377	-0.2479	0.0756	0.2338	-0.1932
Plant height (cm)				-0.1094	0.1720	0.1391	0.0740	-0.3051**	0.0601	0.3974**	-0.3076**
Tant height (Cm)				-0.1020	0.2159	0.4865**	0.2192	-0.0778	0.1542	-0.1417	0.0745
Number of effective tillers per					0.2318	0.5461**	0.2602	-0.0904	0.2122	-0.1739	0.0455
plant					0.2159	0.2369	0.1274	-0.2401	0.1019	0.0432	-0.0335
Length of main spike (cm)						0.2410	0.1407	-0.2426	0.1222	0.0496	-0.0207
Length of main space (cm)						0.2369	0.3049**	-0.0268	-0.0348	0.1490	0.0945
Number of spikelet per main spike							0.3312**	-0.0213	-0.0645	0.1770	0.1301
Trumber of spaceret per main space							0.3049**	-0.0023	0.0303	0.2390	-0.0283
Number of grains per main spike								-0.0093	0.0414	0.2891*	-0.0436
Trumber of grains per main spike								-0.0023	-0.0592	0.0411	0.0014
Peduncle length (cm)									-0.0725	0.0512	0.0330
Teduncie length (cm)									0592	-0.4702**	-0.0900
Biological yield per plant (g)										-0.4572**	-0.2257
Diological field per prairie (g)										-0.4702**	-0.1082
100 grain weight (g)											-0.0967
Too grain weight (g)											0.1082

^{*, **} Significant at 5% and 1% levels, respectively

[MS received: February 02, 2017]

[MS accepted: February 15, 2017]