DEVELOPMENT OF IDENTIFICATION KEYS ON THE BASIS OF PLANT MORPHOLOGICAL CHARACTER IN WHEAT

*UKANI, J. D.; PATEL, J. B.; DABHI, K. H AND RIBADIA, K. H.

DEPARTMENT OF SEED SCIENCE AND TECHNOLOGY, COLLEGE OF AGRICULTURE, JUNAGADH AGRICULTURAL UNIVERSITY, JUNAGADH - 362 001, GUJARAT, INDIA

*E-MAIL: jatindhirajlal@gmail.com

ABSTRACT

An experiment was carried out at the Instructional Farm, Department of Agronomy, Junagadh Agricultural University, Junagadh, for the development of identification keys to characterize 28 wheat varieties of different species (17 of Triticum aestivum, 9 of Triticum durum and 2 of Triticum dicoccum) released for general cultivation in Gujarat at state level as well as at the National level in Central India based on the plant morphological characters. Plant morphological characters divided into five groups viz., plant growth habit, flag leaf characters, ear characters, awn characters and peduncle morphology. Based on the findings, it can be concluded that all the 28 tested varieties can be differentiated on the basis of all the plant morphological characters as a whole, as the tested varieties was differed with respect to one another for at least one plant morphological character. However, with respect to individual plant morphological group, the varieties can be differentiated on the basis of flag leaf characteristics and ear characteristics. The results showed that All the varieties tested noted difference for at least one flag leaf characteristics except DDK 1025 and DDK 1029 and for ear morphological characteristics except LOK 1, GW 496, HI 1500 and HI 1531.

KEY WORDS: Characterization, identification, key, T. aestivum, T. dicoccum, T. durum, wheat

INTRODUCTION

Wheat (Triticum spp. L.) is an annual plant that belongs to the grass family Poaceae, tribe Triticeae and subtribe *Triticineae*. It is the world's most widely cultivated food crop, followed by rice and maize (Gulbitti-Onarici et al., 2009) and one of the oldest and most important of the cereal crops (Harlan, 1992), producing the highest global grain production of any crop (Lamoureux et al., 2005). Three species of wheat viz... **Triticum** aestivum L. (bread wheat), Triticum

durum Desf. (macaroni wheat) and Triticum dicoccum Schulb. (emmer wheat) are presently grown as commercial crop in India, covering 86, 12 and 2 per cent of the total area, respectively. The bread wheat (2n=42) is cultivated in all the wheat growing areas of the country, the macaroni or durum wheat (2n=28) is mostly grown in the Northern (Punjab) and Southern states, while the emmer wheat (2n=28) is confined to the Southern states (mainly Karnataka) and some parts of Gujarat (Anonymous, 2011). In India,

wheat is mainly grown in the states of Uttar Pradesh, Madhya Pradesh, Punjab, Rajasthan, Haryana, Bihar, Maharashtra, Karnataka and Gujarat. During 2013-14, India accounts an area, production and productivity of 31.34 million ha, 95.91 million metric tones and 3061 kg/ha, respectively (Anonymous, 2013). In Gujarat, wheat is grown during 2013-14 in about 13.51 lac ha with total production of 36.50 lac metric tones and productivity of 2074 kg/ha (Anonymous, 2013).

Maintenance of genetic purity of varieties is of primary importance for preventing varietal deterioration during successive regeneration cycles and for ensuring varietal performance at an expected level. The aspects of Distinctness, Uniformity and Stability fundamental (DUS) are for characterization of varieties. In countries having Plant Breeder's Right (PBR) in operation, a new variety is registered only, if it is distinct from varieties, uniform other characteristics and genetically stable. Out-Test is conducted Grow growing the plants under condition and growth features are observed in fixing genuineness. According to International Union for Protection of New Plant Varieties (UPOV), any new characteristics used in varietal characterization should be clearly defined, accepted and should have standard method of observation, least or not affected by environment, accessible to breeders, associated with efforts. reasonable costs and To genotypes/varieties, identify wheat International bodies like UPOV and **IPGRI** have published relevant descriptors. Such types of classical taxonomic approach is still being employed by certification agencies for the purpose of grow out test to determine the genetic purity of seed lots. These morphological descriptors

have a traditional significance and are immediately accessible on the spot without need of equipment. Thus, a clear basis for distinctness testing procedure prior to varietal registration can draw out of this. However, the approach demands a field assessment, which depends on the degree of experience of the operator. In the light of the above facts, the present study on documentation of characters for wheat was planned with objective to identify stable diagnostic characteristics of plant morphology of wheat varieties.

MATERIALS AND METHODS

The experiment was conducted at the Infrastructural Farm, Department of Agronomy, Junagadh Agricultural University, Junagadh, during rabi 2014 for the development of identification keys for the varietal characterization in 28 wheat varieties viz., MP 4010, HI 1500, HI 1531, HI 1544, GW 1, GW 503, DL 788-2, HD 2932, GW 11, GW 173, GW 190, GW 273, LOK 1, GW 322, MP 3288, GW 366, GW 496, HI 8381, HI 8498, HI 8627, HI 8713, A 28, A 206, GDW 1255, GW 1139, RAJ 1555, DDK 1025 and DDK 1029 of different species (17 of Triticum aestivum, 9 of Triticum durum and 2 of dicoccum) Triticum released general cultivation in Gujarat at state level as well as at the National level in Central India based on the plant morphological characters. Plant morphological characters viz., plant growth habit, plant foliage colour, plant waxiness, plant height excluding awns, flag leaf attitude, flag leaf anthocyanin colouration of auricle, flag leaf hairs on auricle, flag leaf length (cm), flag leaf width (cm), flag leaf waxiness of sheath, flag leaf waxiness of blade, days to ear emergence days, ear waxiness, ear colour, ear length excluding awns/scurs (cm), ear shape in profile, ear density, awns presence,

awns length (cm), awns colour, awns attitude, peduncle waxiness, peduncle length (cm) and peduncle attitude were studied as per the guidelines of DUS testing and based on the groups with respect to particular characters, the identification keys were prepared for the characterization of varieties.

RESULTS AND DISCUSSION Plant growth characters

growth Use of plant characteristics to identify a variety has been classical approach for varietal purity testing. The varieties were grouped based on the plant growth habit, plant foliage colour, plant height excluding awns and plant waxiness. the basis of plant growth characters, varietal identification keys were prepared (Figure 1). The varieties viz., HI 1531 and GW 1 were having semi erect plant growth habit, light green foliage colour, short plant height excluding awns/scurs and presence of plant waxiness; DL 788-2, GW 173, HI 8713 and RAJ 1555 were having erect plant growth habit, green foliage colour, short plant height excluding awns/scurs and presence of plant waxiness; HD 2932, GW 190, GW 273, GW 322, MP 3288, HI 8498 and A 28 were having semi erect plant growth habit, green foliage colour, short plant height excluding awns/scurs and presence of plant waxiness; HI 8627 and A 206 were having semi erect plant growth habit, green foliage colour, medium plant height excluding awns/scurs presence of plant waxiness; and HI 1500 and LOK 1 were having semi erect plant growth habit, green foliage very short plant colour, height excluding awns/scurs and presence of plant waxiness forming the different group and cannot be differentiated from each other in the respective group on the basis of plant morphological characters. However, the remaining varieties were different with respect to plant growth characters for at least one character and they can be easily identified in the seed production plot on the basis of plant growth characters. Similar results were reported by Mansing (2010), Sahari *et al.* (2012), Ahmad *et al.* (2013), Nawaz *et al.* (2013), Gergana (2014), Malik *et al.* (2014) and Semwal *et al.* (2014) in wheat.

Flag leaf morphological characters

On the basis of flag leaf morphological characteristics viz.. plant flag leaf attitude, flag leaf antocyanin colouration of auricle, flaf leaf hairs on auricle, flag leaf length, flag leaf width and flag leaf waxiness of sheath and blade, the genotypes were categorized into different groups and varietal identification keys were prepared (Figure 2). All the varieties tested noted difference for at least one flag leaf characteristics except DDK 1025 and DDK 1029 (Figure 2). Two red seed varieties, DDK 1025 and DDK 1029 cannot be differentiated on the basis of flag leaf characteristics were having erect type plant flag leaf absence of flag leaf attitude, anthocyanin colouration of auricle, absence of flag leaf hair on auricle, long flag leaf length, medium flag leaf width, very weak flag leaf waxiness of sheath and very weak flag leaf waxiness of blade. Several workers characterized genotypes on the basis of flag leaf morphological characters such as Mansing (2010), Ahmad et al. (2013), Nawaz et al. (2013) and Gergana (2014) in wheat.

Ear morphological characters

The genotypic variation was observed in case of ear morphological characteristics which are helped to classify the genotypes into different groups. Wheat varieties were grouped on the basis of ear morphological traits *viz.*, days to ear emergence. ear length,

Page 292

ear waxiness, ear colour, ear shape in profile and ear density and the identification keys were prepared (Figure 3). All the varieties tested noted difference for at least one ear morphological characteristics except LOK 1, GW 496, HI 1500 and HI 1531 (Figure 2). The varieties, LOK 1 and GW 496 were having medium ear emergence, dull white ear colour, weak ear waxiness, medium ear length, tapering ear shape and medium ear density, whereas HI 1500 and HI 1531 were having medium ear emergence, dull white ear colour, very weak ear waxiness, medium ear length, parallel sided ear shape and medium ear Similar observations and density. grouping of genotypes based on ear morphological characteristics in wheat were made by Mansing (2010), Sahari et al. (2012) and Ahmad et al. (2013),

Awns morphological characters

Based on awns morphological characteristics viz., awns presence, awns colour, awns attitude and awn length, the genotypes were categorized into different groups. On the basis of morphology, awn varietal identification keys were prepared (Figure 4). The results revealed that all the varieties evaluated possessed awns. Out of 26 varieties, awns colour was dull white in twenty four varieties (MP 4010, HI 1500, HI 1531, HI 1544, GW 1, GW 503, DL 788-2, GW 11, GW 173, GW 190, GW 273, LOK 1, GW 322, MP 3288, GW 366, GW 496, HI 8498, HI 8627, HI 8713, A 28, GDW 1255, GW 1139, DDK 1025, DDK 1029), light brown in two varieties (HD 2932, A 206) and black in two varieties (HI 8381, RAJ 1555). As far as awns length and attitude, the varieties HI 8627, HI 8713, GDW 1255, DDK 1025, DDK 1029, A 206, GW 496, HI 8381, RAJ 1555 and HI 8498 were having very long awns, but differing in awn attitude with

oppressed type (HI 8627, HI 8713, GDW 1255, DDK 1025 and DDK 1029), spreading type (A 206 and GW 496) and medium type (HI 8381, RAJ 1555 and HI 8498) attitude. The varieties, MP 4010, GW 1, MP 3288, GW 1139, HI 1531 and GW 366 were having long awns, but differing in awn attitude with spreading type (MP 4010, GW 1, MP 3288 and GW 1139) and medium type (HI 1531 and GW 366) attitude. The varieties, HI 1500, HI 1544, DL 788-2, GW 273, GW 322, A 28 and GW 190 were having medium length awns, but differing in awn attitude with oppressed type (HI 1500 and HI 1544), spreading type (DL 788-2, GW 273, GW 322 and A 28) and medium type (GW 190) attitude. The varieties, GW 503, GW 173, HD 2932, GW 11 and LOK 1 were having short awns, but differing in awn attitude with spreading type (HD 2932, GW 11 and LOK 1) and medium type (GW 503 GW 173) attitude. Similar observations were made by Mansing (2010), Ahmad et al. (2013), Nawaz et (2013), Gergana (2014) and Semwal et al. (2014) in wheat.

Peduncle morphological characters

The varieties were classified on of peduncle waxiness, the basis peduncle attitude and peduncle length On the basis of peduncle morphology, varietal identification kevs were prepared (Figure 5). The varieties, HI 1531 and A 206 were having very weak peduncle waxiness, medium peduncle length and straight peduncle attitude, while GW 366, A 28 and DDK 1025 were having very weak peduncle waxiness and short peduncle length, but were distinct with crooked, straight and bent peduncle attitude, respectively. The varieties, HI 8381 and HI 8713 were having weak peduncle waxiness, short peduncle length and straight peduncle attitude, while DL 788-2 was having weak

peduncle waxiness, short peduncle length and bent peduncle attitude. Varieties, MP 4010, HI 1500, LOK 1 and GW 496 were having medium peduncle waxiness, short peduncle length and straight type peduncle attitude, while HI 1544, DDK 1029 and GW 1 were having medium peduncle waxiness, short peduncle length and bent type peduncle attitude and GW 503 and HI 8627 having medium peduncle waxiness, medium peduncle length and straight type peduncle attitude. The varieties, GW 173, GW 322, GW 1139, GW 190, MP 3288 and RAJ 1555 were having strong peduncle waxiness and short peduncle length, but were differing in peduncle attitude, where GW 173, GW 322 and GW 1139 having straight type attitude and remaining having bent type attitude. The varieties, HD 2932, HI 8498, GW 11, GW 273 and GDW 1255 were having strong peduncle waxiness and medium peduncle length, but were differing in peduncle attitude with bent type (HD 2932, HI 8498), straight type (GW 11, GW 273) and crooked type (GDW 1255) attitude. Similar observations and grouping were made based on the peduncle morphological characteristics in wheat by Haljak et al. (2008), Naghavi et al. (2009), Mansing (2010) and Nawaz et al. (2013).

CONCLUSION

Based on the findings, it can be concluded that all the 28 tested varieties can be differentiated on the basis of all the plant morphological characters as a whole, as the tested varieties was differed with respect to one another for at least one plant morphological character. However. with respect to individual plant morphological group, the varieties can be differentiated on the basis of flag characteristics leaf and ear characteristics.

REFERENCES

- Ahmad. H. A.: Mansoor. and Muhammad. M. K. 2013. Morphological characterization and structural features for high drought tolerance in some Omani wheat landraces. International Conf. Food Agril. *IACSIT* Sci.. 55: Press. Singapore. DOI: 10.7763/IPCBEE. 2013. V55. 5.
- Anonymous (2011). http://www.authorstream.com/.../arunugale-1055431-heterosis-and-combining.
- Anonymous (2013). Wheat Scenario:

 A Snippet. *e-newsletter* 1 (2013), The Directorate of Wheat Research, Karnal, Haryana (India).
- Gergana, G. (2014). Morphological and agronomical characterization of common wheat landraces (*Triticum aestivum* L.) from the National wheat collection of Bulgaria. *Emir. J. Food Agric.*, **26(2)**: 164-169.
- Gulbitti-Onarici, S.; Sancak, C.; Sumer, S. and Ozcan, S. (2009). Phylogenetic relationships of some wild wheat species based on the internal transcribed spacer sequences of nrDNA. *Curr. Sci.*, **96**: 794-800.
- Haljak, M.; Koppel, R.; Ingver, A. and Ruzgas, V. (2008). Variations in the morphological characteristics of winter wheat (*Triticum aestivum* L.). *Agronomijas Vestis. Latvian J. Agron.*, **11**: 54-59.
- Harlan, J. R. (1992). Origin and Processes of Domestication. In:
 Grass Evolution and Domestication (Ed. GP

- Chapman). Cambridge University Press, Cambridge.
- Lamoureux, D.; Peterson, D. G.; Li, W.; Fellers, J. P. and Gill, B. S. (2005). The efficacy of costbased gene enrichment in wheat (*Triticum aestivum L.*). *Genome*, **48**: 1120-1126.
- Malik. Rekha: Sharma. Hemani: Sharma. Indu: Kundu. Sushila; Verma, A,; Sheoran, Sonia: Kumar. R. Chatrath, R. 2014. Genetic diversity of agromorphological characters in Indian wheat varieties using GT biplot. AJCS. 8(9): 1266-1271.
- Mansing, J. S. (2010). Characterization wheat (Triticum of spp.) trough genotypes morphological, chemical and molecular markers. M.Sc. (Agri.) thesis (Unpublished) submitted to University of Sciences. Agricultural Dharwad.
- Naghavi, M. R.; Monfared, S.R.; Ahkami, A. H. and Ombidbakhsh, M. A. (2009). Genetic variation of *durum* wheat landraces and cultivars

- using morphological and protein markers. *Proc. World Acad. Sci.: Engineer. Technol..* **49**: 73-75.
- Nawaz, R.; Inamullah; Ahmad, H.; Siraj Ud Din and Muhammad, S. I. (2013). Agromorphological studies of local wheat varieties for variability and their association with yield related traits. *Pakistan J. Bot.*, **45(5)**: 1701-1706.
- Sahari, Khoufi; Khalil Khamassi; Jaime A. Teixeira da Silva; Ramzi Chaabane and M. Barek Ben Naceur. (2012). Morphological and molecular characterization of six of the most frequently cultivated hard wheat varieties in Tunisia. J. Plant Breed. Crop Sci., 4(7): 106-114.
- Semwal, D. P.; Pandey, Anjula; Bhandari, D. C.; Dhariwal, O. P. and Sharma, S. K. (2014). Variability study in seed morphology and uses of indigenous rice landraces (Oryza sativa L.) collected from West Bengal, India. Australian J. Crop Sci., 8(3): 460-467.

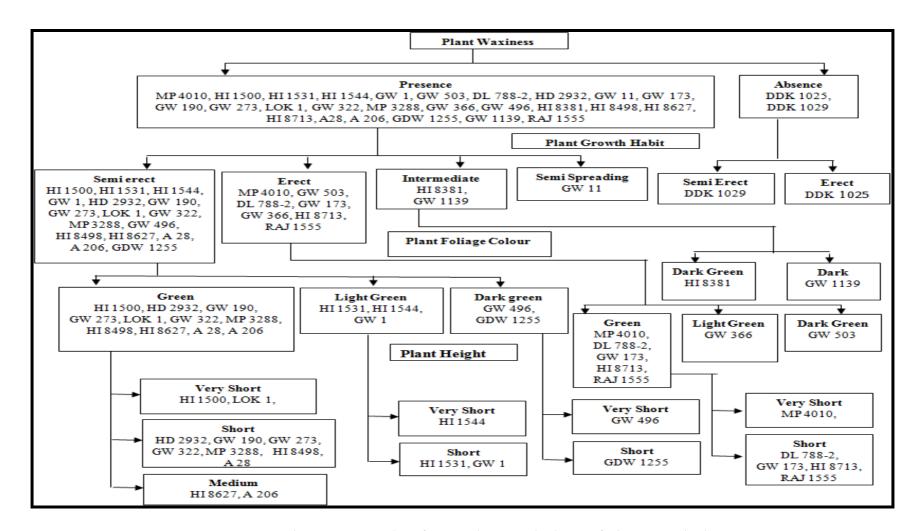


Figure 1: Wheat varieties identification keys on the basis of plant growth characters

Plant Flag Leaf Attitude Semi Erect Semi Erect Recurved HI 1531, MP 3288, HI 8381, HI 8498, HI 1544, GW 503, GW 173, Curved MP 4010, HI 1500, GW 1, HD 2932, GW 11, GW 190, GW 273, DL 788-2, HI 8627, GDW 1255, DDK 1025, DDK 1029 GW 366, HI 8713, A 28, A 206, GW 1139, RAJ 1555 GW 322, GW 496 LOK 1 Flag Leaf Anthocyanin Colouration of Auricle Presence Absence Absence Presence Absence HI 8381, HI 8498, HI 8627 HI 1531, MP 3288, GDW 1255, MP 4010, HI 1500, HD 2932, GW1, GW366, RAJ1555 DDK 1025, DDK 1029 GW 11, GW 190, GW 273, HI 8713, Absence A 28, A 206, GW 1139 Hair on Auricle Presence Absence LOK 1 DL 788-2 Presence Absence Presence MP 3288, DDK 1025. HI 1531, MP 4010. HD 2932, GW 190, GDW 1255 **DDK 1029** GW 273, HI 8713, HI 1500, HI 1544. GW 503, GW 173, GW11, A 206 A 28, GW 1139 GW 496 GW 322 Flag Leaf Length Long Medium Long Medium HI 8627 HI 1544 GDW 1255 GW366 Long Short Long GW 190 Long Long Medium A 206 GW1, GW 496 Medium HI 8381. Long HI 1531 RAJ1555 HI 8498 GW 273. Long Medium GW 1139 GW 173 MP 4010, Narrow HI 1500, GW 11 RAJ 1555 Medium Medium HD 2932, HI GW 503. Flag Leaf Width 8713, A28 GW 322 Medium GW1 Medium Medium Narrow Narrow Medium Narrow Medium MP 4010, HI 1500 GW11 GW 1139 GW 273 Medium HI 8713, A 28 HD 2932 Strong Flag Leaf Waxiness of Sheath Medium MP 3288 MP 4010 Medium Very Weak GW 503 Medium Strong Weak Strong DDK 1025 MP 4010 HI 8713 HI 1500 A 28 HI 8498 DDK 1029 Strong GW 322 Flag Leaf Waxiness of Blade Very Weak **DDK 1025 DDK 1029**

Figure 2: Wheat varieties identification keys on the basis of flag leaf morphological characters.

Ear Colour Light Brown **Dull White** MP 4010, HI 1500, HI 1531, HI 1544, GW 1, GW 503, DL 788-2, GW 11, GW 173, GW 190, GW 273, LOK 1, GW 322, MP 3288, GW 366, HD 2932: GW 496, HI 8381, HI 8498, HI 8627, HI 8713, A 28, GDW 1255, GW 1139, RAJ 1555, DDK 1025, DDK 1029 A 206 Days to Ear Emergence Early Very Early Medium Early Late MP 4010, GW 503, GW 11, HI 1544, GW 1, DL 788-2, HD 2932, HI 1500, HI 1531, GW 190, HI 8627, DDK 1025, GW 366 GW 173, MP 3288, A 28, GDW 1255, GW 273, LOK 1, GW 322, HI **DDK 1029** GW 1139, RAJ 1555 8381, HI 8498, HI 8713, GW 496 Strong Weak Ear Waxiness Very Weak GW11 **DDK 1025** Weak A 206 HD 2932 Medium Medium HD 8627 GW 503 Weak Strong Very Weak Medium HI 1544, GW 1. MP 3288, GW 1139. DL 788-2, Very Weak HD 2932, GDW 1255 A 28 RAJ 1555 Very Weak GW 173 MP 4010, DDK 1029 GW366 Weak Strong Very Weak Medium Ear Length LOK 1. HI GW 190, GW HI 1500, GW 273, HI 8381 8713, GW 496 322, HI 8498 HI 1531 Short Short HI 1544 Short GDW 1255 Short RAJ 1555 Medium Medium Medium HD 2932, GW1 Medium MP 3288. Medium Medium GW 173 GW 1139 Short Medium Short HI 8498 DL 788-2 A 28 Ear Shape Medium GW 190. Parallel Tapering GW 322 Tapering Tapering Club Shaped Parallel Sided Tapering Sided LOK 1 MP 4010 GW 366 HD 2932 GW 173 Tapering Ear Density Parallel Sided Parallel Sided HI 8381 Very Dense Dense MP 3288 GW 1139 Medium Medium Medium LOK 1, GW 496 HI 8713 GW 322 GW 190 HI 1500, HI 1531

Figure 3: Wheat varieties identification keys on the basis of ear morphological characters

Awn colour Dull white Light brown Black MP 4010, HI 1500, HI 1531, HI 1544, GW 1, HD 2932, HI8381, GW 503, DL 788-2, GW 11, GW 173, GW 190, A 206 RAJ 1555 GW 273, LOK 1, GW 322, MP 3288, GW 366, GW 496, HI 8498, HI 8627, HI 8713, A 28, GDW 1255, GW 1139, DDK 1025, DDK 1029 Awn length Very long Very long Short Medium Long Short Very long HD 2932 A 206 HI8381. GW 503. HI 1500. MP 4010. GW 496, RAJ 1555 GW 11, HI 1544, HI 1531, HI 8498, GW 173, DL 788-2, GW 1. HI 8627, LOK 1 GW 190, MP3288, HI 8713, GW 366, GW 273, GDW 1255, GW 322, GW 1139 DDK 1025, A 28 **DDK 1029** Awn attitude Spreading Oppressed Oppressed Medium Medium MP 4010, HI 8627, HI 1500. HI8381, GW 503, HI 1544 GW 1, HI8713, RAJ 1555 GW 173 MP3288, GDW 1255, GW 1139 DDK 1025, Spreading **DDK 1029** DL 788-2 Spreading Medium GW 273, GW 11, Spreading HI 1531. LOK 1 GW 322. GW 496 GW 366 A 28 Medium Medium GW 190 HI 8498

Figure 4: Wheat varieties identification keys on the basis of awn morphological characters

Figure 5: Wheat varieties identification keys on the basis of peduncle morphology.

[MS received: August 9, 2015]

[MS accepted September 7, 2015]