# HETEROSIS FOR GRAIN YIELD AND ITS COMPONENT TRAITS IN SORGHUM [Sorghum bicolor (L.) MOENCH]

\*CHAUDHARI, D. R.<sup>1</sup>; SOLANKI, B. G.<sup>2</sup>; NARWADE, A. V.<sup>3</sup>; PATEL, ASHWIN<sup>4</sup> AND FALDU, G. O.<sup>5</sup>

## DEPARTMENT OF GENETICS AND PLANT BREEDING N.M. COLLEGE OF AGRICULTURE NAVSARI AGRICULTURAL UNIVERSITY NAVSARI – 396 450, GUJARAT, INDIA

\*E.MAIL: thewall.chaudhari@gmail.com

1.Ph.D.Student, Deptt.of Genetics and Pl. breeding, N.M.College of Agri., NAU, Navsari

2. Research Scientist, Main Cotton Research Station, Athwa Farm, NAU, Surat

3. Asstt. prof., Deptt. of Genetics and Pl. breeding, N.M. College of Agri., NAU, Navsari

4. Asstt. Res. Scientist, Main Sorghum Res. Station, NAU, Surat

5. Asstt. Res. Scientist, Main Cotton Research Station, Athwa Farm, NAU, Surat

#### **ABSTRACT**

The present investigation was carried out to study the magnitude of standard heterosis in 35 crosses ( $F_1$ s) of sorghum [Sorghum bicolor (L.) Moench] developed by crossing the five females with seven testers using Line X Tester mating design. Observations were recorded on six characters viz., days to 50 per cent flowering, days to maturity, plant height (cm), panicle length (cm), grain yield per plot (g) and test weight (g). The analysis of variance revealed significant differences among the genotypes viz., parents, crosses and parents vs. crosses for all the characters. The crosses  $1005A \times SR-2872$ ,  $1009A \times SR-2872$ ,  $1005A \times Pantchari$ ,  $296A \times SR-2879$  and  $1CSA-467A \times SR-2879$  showed high standard heterosis for grain yield per plot and other component traits. Thus, these crosses can be exploited by conventional breeding procedure.

KEY WORDS: Sorghum bicolor, standard heterosis, grain yield.

### INTRODUCTION

Sorghum (Sorghum bicolor (L.) Moench) is an important crop for dry land area, which provides staple food for the poor people of world. Sorghum is a multipurpose crop belongs to family poaceae having 2n = 20chromosomes. The grain is used as human food, whereas the fodder is utilized as cattle feed, which provides milk and meat for the nourishment of human being. Sorghum is nutritionally superior to other fine cereals such as rice and wheat, hence it known as nutritious cereal.

Heterosis is expressed as per cent increase or decrease of hybrid performance over the parental value (Mutazing, 1945, Pal and Singh, 1946). Since the better parent may fall on either extreme, depending upon the traits, heterosis may results in any one of the two directions, positive or negative. The utilization of heterosis or hybrid vigour as a means maximizing the yield of agricultural crops has become one of the most important techniques in plant breeding. Knowledge on the magnitude of heterosis for various characters is essential to decide better combinations

to exploit them through heterosis breeding. The economic heterosis rather than mid parent heterosis and heterobeltiosis, reflects the actual superiority over the best existing cultivar to be replaced and appears to be more relevant and practical.

## **MATERIALS AND METHODS**

Five lines viz., 296A, AKMS-14A, ICSA-467A, 1005A and 1009A; and seven testers viz., B-58586, CSV-20, Kekri local, Pantchari, SR-2872, goti SR-2879 and Nizer employed and crosses were made in Line x Tester mating design during Kharif 2014. The thirty crosses. twelve parents including a standard check (GJ-42) were grown in a randomized block design (RBD) with three replications in three diverse environments viz., Surat, Vyara and Waghai during kharif 2015. The observations were recorded on five random plants for each treatment in each replication for plant height (cm), panicle length (cm) and test weight (g). The observations for days to 50 % flowering, days to maturity and grain yield per plot (g) were recorded on the plot basis. The collected data were subjected to statistical analysis to understand the magnitude of heterosis. Computation of standard heterosis was carried out as per procedure suggested by Meredith and Bridge (1972).

### RESULTS AND DISCUSSION

analysis of variance revealed that the mean squares due to the genotypes, parents and hybrids were highly significant for all the characters (Table 1). This reflected presence of considerable amount of variability existed among genotypes, parents and hybrids. The mean squares due to environments for all the characters were also found highly indicating significant considerable influence of environment on

expression of various traits. The performance average of hybrids differed significantly than that of parents suggesting the presence of average heterosis, which was evident from the significance of parents vs. comparison for hvbrids all characters pooled over environments except days to 50 % flowering and days to maturity. Highly significant mean squares due to genotypes x environments and hybrids environments were also observed for all the characters which emphasized that genotypes, parents and hybrids differently interacted to diverse environments. Similarly the mean squares due to parents x environments interactions were found to significant to highly significant for all the characters except days to maturity.

The range of standard heterosis along with number of significant crosses for different characters is present in Table 2. In the present study, heterosis for grain yield per plot was found significantly positive 5 crosses (1005A x SR-2872 followed by 1009A x SR-2872, 1005A x Pantchari, 296A x SR-2879 and ICSA-467A x SR-2879) over standard check (Table 2 and 3). The range of heterosis for grain yield varied from 1.63 per cent (1005A x SR-2879) to 44.10 per cent (1005A x SR-2872) over standard check (Table 2.). Similar results for grain yield were reported by Udutha (2008), El-Dardeer et al. (2011), Tariq et al. (2012), Jain and Patel (2014) and Boratkar and Ninghot (2015). Thus, these crosses in future can be exploited easily for grain yield purpose by conventional breeding procedure. Heterosis for grain yield is being manifested as the cumulative effect of heterosis for component traits. The elaborative study of above crosses revealed the fact that most of the exhibited positive crosses and

significant heterosis for grain yield and for most of the component characters.

Heterosis for days to 50 per cent flowering and days to maturity significant and negative (desirable) in 13 and 10 crosses over standard check, respectively (Table 2). The range of heterosis for days to 50 per cent flowering varied from -1.05 per cent (296A x Nizer goti) to -17.96 per cent (AKMS-14A x B-58586) over standard check, whereas for days to maturity, it ranged from -0.31 per cent (296A x Nizer goti) to -11.90 per cent (AKMS-14A x B-58586) over standard check. Similar trend was also reported by Udutha (2008) and Kale (2012). This indicated that there was a possibility for breeding of sorghum for earliness.

For plant height, the range of standard heterosis was observed from -29.51 (ICSA-467A x CSV-20 to 46.24 (296A x Kekri local). Total twenty exhibited highly three crosses significant and two crosses were significant positive heterotic effects for plant height (Table 2). Such results were also reported by Jain and Patel (2014), which indicated that hybrids were tall compared to standard check. Six crosses found highly significant negative and one was significant negative heterotic effect for plant height, it was also noted in study carried out by Tariq et al. (2012), suggested that seven crosses were found significantly dwarf compared to standard check.

The hybrids recorded standard heterosis for panicle length ranged from 0.40 per cent (1009A x CSV-20) to 68.11 per cent (296A x B-58586) (Table 2). Twenty nine F<sub>1</sub>'s exhibited positive and significant to highly significant heterosis for this trait. The most significant positive heterotic crosses in order were 296A x B-58586, AKMS-14A x SR-2872 and 296A x

Nizer goti (Table 3). A positive heterosis for panicle length was also reported by Desai *et al.* (2006), Kshirsagar (2007), Udutha (2008) and Kale (2012).

The estimates of standard heterosis in hybrids for test weight varied from 0.09 per cent (1009A x B-58586) to 18.24 per cent (AKMS-14A x Nizer goti) (Table 2). Total twelve crosses exhibited highly significant and one was significant positive heterosis over the standard check. The most three heterotic hybrids in order were AKMS-14A x Nizer goti, AKMS-14A x SR-2879 and 1009A x Pantchari. Similar result also reported by Kulkarni et al. (2007) and Jain and Patel (2014).

## **CONCLUSION**

Based results on and discussion, it can be concluded that heterotic response for yield and its components resulted only in selected cross combinations (1005A x SR-2872 followed by 1009A x SR-2872, 1005A x Pantchari, 296A x SR-2879 and ICSA-467A x SR-2879) indicating the predominant role of non-fixable interalielic interactions. These crosses hold promise for further evaluation and commercial exploitation of heterosis for grain yield purpose attributes by conventional breeding procedure.

## **REFERENCES**

Boratkar, M. V. and Ninghot, C. J. (2015). Heterosis for grain yield and its attributing traits in sorghum [Sorghum bicolor (L.) Moench]. Bioinfolet, 12(2 B): 534-537.

Desai, N.J.; Naik, M.R.; Vashi, P.S. and Kshirsagar, R.M. (2006). Heterosis in yield and yield components in sorghum. *J. Maharashtra Agric. Univ.*, **31**(1): 66-68.

El-Dardeer, A. E.; El- Morshidy, M. A.; Mahmoud, A. M. and Ali,

- H. I. (2011). In: Special Issue: The 5<sup>th</sup> Conference of Young Scientists Fac. of Agric. Assiut Univ. May, 8, 2011. Heterosis and combining ability in grain sorghum (Sorghum bicolor (L.) Moench) Under Normal and Water Stress Conditions. Assiut J. Agric. Sci., 42: 27-31.
- Jain, S. K. and Patel, P. R. (2014). Combining ability and heterosis for grain yield, fodder vield and other agronomic traits in sorghum [Sorghum] bicolor (L.) Moench]. Electronic J. Pl.Breed., 5(2): 152-157.
- Kale, B.H. (2012). Genetic and stability analysis for yield and yield contributing traits over different seasons in sorghum [Sorghum bicolor (L.) Moench] Ph.D. Thesis, Navsari Agricultural University, Navsari.
- Kshirsagar, R.M. (2007). Heterosis, combining ability and stability studies in grain sorghum [Sorghum bicolor (L.) Moench]. published Ph.D. Thesis. Navsari Agricultural University, Navsari.
- Kulkarni, V. M.; Kadam, D. E.; Patil,

- S. V and Chaudhary, S. B. (2007). Heterosis studies in *rabi* sorghum (*Sorghum bicolor* (L.) Moench) under rainfed condition. *Adv. Pl. Sci.*, **20** (1): 89-91.
- Meredith, W. E. and Bridge, R. R. (1972). Heterosis and gene action in cotton (*Gossypium hirsutum* L.). *Crop Sci.*, **12**: 304-310.
- Mutazing, A. (1945). Hybrid vigour in crosses between purelines of Galeopsis and tetrant. *Hereditas.* **31**: 391-398.
- Pal, B.P and Singh, H. (1946). Studies in hybrid vigour in brinjal and bitter gourd. *Indian J. Genet.*, **6**: 19-33.
- Tariq, A. S.; Akram, Z.; Shabbir, G.; Khan, K. S. and Iqbal, M. S. (2012). Heterosis and combining ability for quantitative traits in fodder Sorghum (Sorghum bicolor L.). Electronic J. Pl. Breed., 3(2): 775-781.
- Udutha, J. V. (2008). Genetic study of yield and its components in sorghum [Sorghum bicolor (L.) Moench]. Indian J. Genet., **68** (2): 123-126.

\_\_\_\_\_\_

Table 1: Mean squares for different characters in grain sorghum (pooled over locations).

| Source of variation             | d.f. | Days to 50% | Days to    | Plant Height  | Panicle     | Grain Yield per | Test       |
|---------------------------------|------|-------------|------------|---------------|-------------|-----------------|------------|
|                                 |      | Flowering   | Maturity   | (cm)          | Length      | Plot            | Weight     |
|                                 |      |             |            |               | (cm)        | ( <b>g</b> )    | <b>(g)</b> |
| Environments                    | 2    | 557.816 **  | 448.915 ** | 17012.500 **  | 142.546 **  | 178501.400 **   | 0.413 **   |
| Replication x Environments      | 4    | 1.610       | 16.571     | 107.387       | 3.052       | 814.535         | 0.001      |
| Genotypes                       | 46   | 277.633 **  | 253.460 ** | 24121.150 **  | 117.047 **  | 290536.300 **   | 0.878 **   |
| Parents                         | 11   | 125.434 **  | 87.120 **  | 26859.100 **  | 109.806 **  | 82215.350 **    | 0.759 **   |
| Females (F)                     | 4    | 58.856 **   | 34.644     | 5801.225 **   | 30.290 **   | 24603.800 **    | 0.378 **   |
| Males (M)                       | 6    | 128.497 **  | 91.735 **  | 10660.950 **  | 127.494 **  | 132223.700 **   | 1.027 **   |
| Females vs Males (F vs M)       | 1    | 373.371 **  | 269.334 ** | 208279.400 ** | 321.738 **  | 12611.67        | 0.677 **   |
| Hybrids                         | 34   | 334.948 **  | 314.571 ** | 21038.170 **  | 89.852 **   | 337656.000 **   | 0.503 **   |
| Parents vs. hybrids (P vs H)    | 1    | 3.116       | 5.395      | 98824.750 **  | 1121.334 ** | 979998.300 **   | 14.916 **  |
| <b>Genotypes x Environments</b> | 92   | 17.671 **   | 22.567 **  | 1149.694 **   | 13.294 **   | 11125.000 **    | 0.032 **   |
| Parents x Environments          | 22   | 15.313 *    | 15.762     | 756.388 **    | 10.672 **   | 6816.895 *      | 0.026 **   |
| Females x Environments          | 8    | 18.872 *    | 20.578     | 479.885       | 8.234       | 7916.292 *      | 0.030 **   |
| Males x Environments            | 12   | 14.450      | 13.743     | 358.779       | 11.088 **   | 4256.782        | 0.022 *    |
| (F vs M) x Environments         | 2    | 6.257       | 8.608      | 4248.058 **   | 17.928 *    | 17779.980 *     | 0.03       |
| Hybrids x Environments          | 68   | 18.659 **   | 25.005 **  | 1258.758 **   | 13.571 **   | 12551.280 **    | 0.035 **   |
| (P vs H) x Environments         | 2    | 9.984       | 14.537     | 1767.910 **   | 32.705 **   | 10020.73        | 0.031      |
| Error                           | 276  | 9.561       | 14.666     | 347.353       | 4.308       | 3800.966        | 0.012      |

<sup>\*, \*\* =</sup> significant at 5 per cent and 1 per cent levels of significance, respectively.

\_\_\_\_\_\_

Table 2: The range and number of crosses showing significant desirable heterosis in grain sorghum (Pooled over locations).

| Characters               | Standard | Number of Significant |             |
|--------------------------|----------|-----------------------|-------------|
|                          | Minimum  | Maximum               | Crosses     |
| Days to 50 % Flowering   | -1.05    | -17.16                | 13          |
| Days to Maturity         | -0.31    | -11.90                | 10          |
| Plant Height (cm)        | -29.51   | 46.24                 | 25 Tallness |
|                          | -29.31   | 40.24                 | 7 Dwarfness |
| Panicle Length (cm)      | 0.40     | 68.11                 | 29          |
| Grain Yield per Plot (g) | 1.63     | 44.10                 | 5           |
| Test Weight (g)          | 0.09     | 18.24                 | 13          |

Table 3: Crosses having positive heterosis for six characters in grain sorghum (Pooled over locations).

| Characters               | Best Crosses                                                                  |  |  |
|--------------------------|-------------------------------------------------------------------------------|--|--|
| Days to 50 % Flowering   | AKMS-14A x B-58586, AKMS-14A x CSV-20, ICSA-467A x B-58586                    |  |  |
| Days to Maturity         | AKMS-14A x B-58586, ICSA-467A x B-58586, AKMS-14A x CSV-20                    |  |  |
| Plant Height (cm)        | 296A x Kekri local, 296A x B-58586, ICSA-467A x Kekri local (Tallness)        |  |  |
|                          | ICSA-467A x CSV-20, ICSA-467A x B-58586, AKMS-14A x Pantchari (Dwarfness)     |  |  |
| Panicle Length (cm)      | 296A x B-58586, AKMS-14A x SR-2872, 296A x Nizer goti                         |  |  |
| Grain Yield per Plot (g) | 1005A x SR-2872, 1009A x SR-2872, 1005A x Pantchari, 296A x SR-2879 and ICSA- |  |  |
|                          | 467 x SR-2879                                                                 |  |  |
| Test Weight (g)          | AKMS-14A x Nizer goti, AKMS-14A x SR-2879, 1009A x Pantchari                  |  |  |

[MS received: June 11, 2016]

[MS accepted: June 21, 2016]