GENETIC VARIABILITY FOR QUALITY, YIELD AND YIELD RELATED PARAMETERS IN BASMATI RICE (Oryza sativa L.)

*1SUPRIYA; 2JAISWAL, H. K. AND 1SRIVASTVA, ANURAG

DEPARTMENT OF GENETICS AND PLANT BREEDING INSTITUTE OF AGRICULTURAL SCIENCE BANARAS HINDU UNIVERSITY VARANASI – 221005, UTTAR PRADESH, INDIA

*EMAIL: 4ujiya@gmail.com

ABSTRACT

Twenty five Basmati rice (Oryza sativa L.) germplasm, representing diversity in yield and quality traits were sown on 17th June, and 25 days old seedlings were used for transplanting in the field in a Randomized Block Design with two replications. Each plot consisted of three rows of 1.5m length with spacing (15 \times 20 cm) provided by, AICRIP, Department of Genetics and Plant Breeding, Banaras Hindu University, Varanasi, U.P. Observations were recorded for fifteen traits viz., days to 50 per cent flowering, days to maturity, plant height, panicle length, effective panicle per plant, grain yield per plant, seeds per panicle, 100 seed weight, test weight (gm), kernel length, kernel breadth, Kernel L/B Ratio, kernel length after cooking (KLAC), kernel breadth after cooking (KBAC) and alkali spread value. Analysis of variance recorded highly significant mean sum of squares for all yield characters and for some quality characters. Seeds per panicle (62 to 305) showed highest range of variation and highest values for GCV and PCV was observed for seeds per panicle (38.28% and 38.88% respectively) followed by days to maturity, days to 50 per cent flowering, plant height, grain yield per plant and number of effective panicle among yield traits. High heritability (more than 85%) along with moderate genetic advance for the characters viz., days to 50 per cent flowering (47.15%), days to maturity (47.7%) and plant height (45.9%) suggests that the careful and restricted selection will be effective for the improvement of these characters. Seeds per panicle expressed high heritability (96.9%) coupled with high genetic advance (121.7%).

KEY WORDS: Basmati rice, GCV, genetic advance, heritability, PCV, transplanting

INTRODUCTION

Rice is believed to have arisen from a single domestication event (8200-13500 years ago) in wild *O. rufipogon* in the region of Yangtze river valley of china. The genus *Oryza* includes 24 species, (2n=24)

representing 10 genomic type (AA, BB, CC, BBCC, CCDD, EE, FF, GG, HHJJ and HHKK) of which 22 are wild and only two, namely *Oryza sativa* and *Oryza glaberrima* are cultivated (Watanabe, 1997). Scented rice occupies a prime position in

M.Sc. Scholar, Department of Genetics and Plant Breeding, Institute of Agricultural Science, Banaras Hindu University, Varanasi – 221 005, Uttar Pradesh

Professor, Department of Genetics and Plant Breeding, Institute of Agricultural Science, Banaras Hindu University, Varanasi – 221 005, Uttar Pradesh

Indian culture, not only because of their high quality, but that they have been considered auspicious. Scented rice is nature's gift exclusive to Indian subcontinent, in which Basmati rice is a special type of aromatic rice known the world over for its extra - long grains, and the pleasant and distinct, 'popcorn' like aroma component (2acetyle-l-pyrroline), has been reported as an important flavour component of several aromatic varieties. Traditional basmati rice is not only in demand in the domestic markets, but is also seen of connoisseurs, the menu worldwide creating a billion-dollar export market.

Variability refers to the presence of difference among the individuals of plant population. Variability results due to difference either in the genetic constitution of the individuals of a population or in the environment in which they are grown. Selection is also effective when there is genetic variability among the individuals in a population. Hence, insight into the magnitude of genetic variability present in a population is of paramount importance to a plant breeder for stating a judicious breeding programme (Vivek et al., 2005).

Knowledge of heritability and genetic advance of the character indicates the scope for the improvement through selection. Heritability estimates along genetic advance are normally more helpful in predicting the gain under selection. However, it is not necessary character showing heritability will also exhibit high genetic advance (Johnson et al., 1955).

MATERIALS AND METHODS

In the present investigation, the experimental material comprised of 25 scented rice germplasm (*Oryza sativa* L.), (Table 1) representing diversity in yield and quality traits were sown on

17th June and 25 days old seedlings were used for transplanting in the field in a Randomized Block Design with two replications. Each plot consisted of three rows of 1.5m length with spacing (15×20) cm provided by, AICRIP, Department of Genetics and Plant Breeding, Banaras Hindu University, Varanasi, U.P. Observations were recorded for fifteen traits viz., days to 50 per cent flowering, days to maturity, plant height, panicle length, effective panicle per plant, grain yield per plant, seeds per panicle, 100 seed weight, test weight (g), kernel length, kernel breadth, Kernel L/B Ratio, kernel length after cooking (KLAC), kernel breadth after cooking (KBAC) and alkali spread value. Estimation of Alkali Digestion was done as per Standard Evaluation System for Rice given in Table 2. Analysis of variance was done as per Randomized Block Design method given by Panes and Sukhatme (1985), GCV and PCV by Burton and DeVane (1953),Heritability (h²) and genetic advance Allard (1960).

RESULTS AND DISCUSSION

Analysis of variance recorded highly significant mean sum of squares for all yield characters and quality characters studied (Table 3) indicating the presence of substantial variation among the genotypes with respect to the traits studied.

Range and variances

Seeds per panicle (62.00 to 305.00) showed the highest range of variation followed by plant height (111.90 to 213.00), days to maturity (90.50 to 166.00), days to 50 per cent flowering (63.80 to 137.00), panicle length (20.30 to 29.50) and number of effective panicle (6.00 to 18.00) among yield attributing traits and among quality traits, kernel length after cooking (6.10 to 13.57) showed the highest range of variation followed by

kernel length (4.00 to 8.15), alkali spread value (2.50 to 6.70), L/B ratio (1.91 to 5.01), kernel breadth (1.44 to 3.21) and lowest for elongation ratio (1.12 to 2.03) inferring maximum scope for selection of these traits (Table 4). It was observed that the range of variation for quality traits is less compared to yield traits indicating the difficulty in selection for quality traits.

The genotypic variance for seeds per panicle was very high followed days to maturity, days to flowering, days to 50 per cent flowering and plant height for yield traits. For quality traits, the highest genotypic variance was noted for kernel length after cooking followed by kernel length, alkali spread value, L/B ratio, kernel breadth after cooking and kernel breadth. Variance is a statistical parameter which measures variation within a particular trait. But it does not provide a real measure for comparison of variation between different traits.

Coefficient of variation

The highest values for genotypic coefficients of variation (GCV) and phenotypic coefficients of variation (PCV) was observed for seeds per panicle panicle (38.28% and 38.88%, respectively) followed by days to maturity, days to 50 per cent flowering, plant height, yield per plant and number of effective panicle among yield traits (Table 5). For quality traits, the highest values for genotypic and phenotypic coefficients of variation were observed for kernel length after cooking (22.99 % and 23.10 %, respectively) followed by kernel length, alkali spread value, L/B ratio, kernel breadth after cooking and kernel breadth among quality traits. The findings of Singh (2005) are in agreement with those of the present study, where he observed higher

genotypic and phenotypic coefficients of variation for test weight (31.56 % and 31.85%, respectively) indicating important role of additive gene action for the expression of this trait and may be considered as a selection parameter. Higher magnitude of PCV for all the traits are higher than GCV, suggested that appreciable portion of variability has been accounted by environmental effects.

Only the GVC is not sufficient for the find out the amount of heritable variation. Burton (1952) suggested that, GCV together with the heritability estimates would give the best picture of the extent of advance to be expected by selection.

Heritability and genetic advance

In the present study (Table 5), very high heritability (broad sense) was noted for days to 50 per cent flowering (99.5%) and days maturity (99.0%) and moderate for main number of effective panicles (95.2%) and number of seeds per panicle (96.9%). For quality traits, all characters studied showed heritability estimates. Similar findings were reported by Singh (2005) and Panwar (2005) in his studies on heritability in basmati rice. Higher magnitude of heritability in broad sense indicated that though character is least influenced environmental effects. Selection for improvement of such traits may not be useful, because it include both additive and non-additive variance.

High heritability coupled with moderate genetic advance was observed with low GCV for days to 50 per cent flowering (23.8%), days to maturity (18.61%) among yield traits and in quality traits, kernel length (20.21%) and kernel length after cooking (22.99%). In the present study, moderate heritability (79%) and low genetic advance (4.06%) was

exhibited by panicle length indicating the predominant role of non-additive gene action and environment plays maior role in governing these improvement of these characters. characters is complicated and it might be possible through heterosis breeding. High heritability (more than 85%) along with moderate genetic advance for the characters viz., days to 50 per cent flowering (47.15%), days to maturity (47.7%) and plant height (45.9%) suggests that the careful and restricted selection will be effective for the improvement of these characters. Seeds per panicle expressed high heritability (96.9%) coupled with high genetic advance (121.7%).

CONCLUSION

High heritability (more than 85%) along with moderate to high genetic advance for the characters *viz.*, seeds per panicle, days to 50 per cent flowering, days to maturity and plant height suggests that the careful and restricted selection may followed for the improvement of these characters and ultimately the yield.

ACKNOWLEDGMENTS

The corresponding author is very thankful to the Dr. H. K. Jaiswal, Professor and Sr. Rice Breeder, AICRIP, Department of Genetics and Breeding, Banaras Plant Hindu University, Varanasi, U.P., India for providing rice germplasm, experimental field, laboratory facilities and other necessary guidance during the whole experiment.

REFERENCES

Allard, R. W. (1960). Principles of Plant Breeding. John Wiley and Sons Inc. London.pp: 83-108.

- Burton, G. W. (1952). Quantitative inheritance in grasses. *Proc.* 6th Int. Grassland Congress, 1: 227-283.
- Burton, G. W. and DeVane, E. H. (1953). Estimating heritability in tall fesque (*Festucu arundinacea*) from replicated clonal material. *Agron. J.*, **45**: 478-481.
- Johnson, R. E.; Robinson, H. W. and Comstock, H. F. (1955). Estimates of genetic and environmental variability in soybeans. *Agron. J.*, **48**(3-4):311314.
- Panse, V. G. and Sukhatme, P. V. (1985). Statistical methods for agricultural workers, ICAR Publication, New Delhi, p.145.
- Panwar, L.L. (2005). Genetic variability, heritability and genetic advance for panicle characters in transplanted rice. *Res. Crops*, **6**(3): 505-508.
- Singh, S. (2005). Genetic analysis of certain mutant lines of basmati rice in M₁ generation. *Crop Res.*, **29**(3): 462-465.
- Vivek, S.; Singh, S. K. and Singh. H. (2005). Estimation genetic variability, heritability and genetic advance in rice (*Oryza sativa* L.). *Agric. Sci.*, **25**(3): 207-209.
- Watanabe, Y. (1997). Genomic constitution of Genus Oryza. Tokyo: Food and Agriculture Policy Research Center.

Table 1: List of scented variety of rice used in the investigation

Sr. No.	Germplasms	Origin
1.	Begum	Jammu & Kashmir
2.	Quadir	Jammu & Kashmir
3.	Mehvan	Jammu & Kashmir
4.	Mushkbudgi	Jammu & Kashmir
5.	Mazhat	Jammu & Kashmir
6.	Kamad	Jammu & Kashmir
7.	Majheradehradoon basmati-1	Uttarakhand
8.	Majheradehradoon basmati-2	Uttarakhand
9.	Majheradehradoon basmati-3	Uttarakhand
10.	Juhibengal 24-1	Bihar
11.	Kala namak 12-1	Uttar Pradesh
12.	Type-3	Uttarakhand
13.	Sarjoo -52	Uttar Pradesh
14.	NDR-359	Uttar Pradesh
15.	Tarori basmati	Haryana
16.	Basmati-370	Punjab
17.	Adam chini	Uttar Pradesh
18.	Badshahbhog	Uttar Pradesh
19.	Jeerabatti	Uttar Pradesh
20.	Tulsimangri	Madhya Pradesh
21.	Dubraj	Madhya Pradesh
22.	Jaya	Punjab
23.	Sonachur	West Bengal
24.	Laungchur	Uttar Pradesh
25.	Hariram 48	Uttar Pradesh

Table 2: Scale for alkali digestion value and GT for milled rice

Scale	Features	Alkali Digestion	Rating	GT (°C)
1	Not effected but chalky	Low	High	75-79
2	Kernel swollen	Low	High	75-79
3	Swollen with color incomplete	Low or	High or	70-74
	and narrow	Intermediate	Intermediate	
4	Swollen with color incomplete	Intermediate	Intermediate	70-74
	and wide			
5	Split or segmented with collar	Intermediate	Intermediate	70-74
	Complete and wide			
6	Dispersed, merging with color	High	Low	65-69
7	Completely dispersed and	High	Low	65-69
	Intermingled			

Table 3: Analysis of variance for 15 yield and yield traits characters in 25 genotypes of scented rice in *kharif* 2013

Sr.	Characters	Replication	Treatment	Error	
No.	Characters	Replication	Truthen	Liioi	
1.	Days to 50 per cent Flowering	0.744	1055.62**	2.7017	
2.	Days to Maturity	1.843	1088.36**	5.2915	
3.	Days to Maturity	1.729	1008.95**	8.397	
4.	Effective Panicle (Nos.)	2.000	19.872**	0.490	
5.	Panicle Length(cm)	0.129	11.178**	1.314	
6.	Seeds per Panicle (Nos.)	22.444	7324.20**	114.830	
7.	Test weight (g)	0.006	0.752**	0.007	
8.	Yield per Plant (g)	3.135 **	39.572**	0.346	
9.	Kernel Length (mm)	0.014	3.032**	0.034	
10.	Kernel Breadth (mm)	0.008	0.429**	0.005	
11.	Kernel L/B Ratio	0006	1.929**	0.016	
12.	KLAC (mm)	0.076	9.605**	0.045	
13.	KBAC (mm)	0.00007	0.721**	0.018	
14.	Elongation Ratio	0.003	0.071**	0.002	
15.	Alkali Spread Value (ALKD)	0.010	2.992**	0.098	

^{**}Significance p=0.01,

Table 4: Summary table of the general mean, range of variation, C.D values and genotypic, phenotypic and error variance of different characters contributing to yield in scented rice (*Oryza sativa* L.) in *kharif* 2013

Character	General	Range		Critical		Phenoty pic	Genotypic	Error/		
	Mean			Difference		Difference		Variance	Variance	Environm-ental
		Lowest	Highest	5%	1%			Variance		
Days to 50 per cent Flowering	96.37	63.80	137.00	3.39	4.59	529.16	526.46	2.70		
Days to Maturity	124.98	90.5	166.00	4.74	6.43	546.82	541.53	5.29		
Days to Maturity	142.86	111.90	213.00	5.98	8.10	508.67	500.27	8.39		
Effective Panicle (Nos.)	9.97	6.00	18.00	1.44	1.95	10.18	9.69	0.49		
Panicle Length(cm)	24.56	20.30	29.50	2.36	3.20	6.24	4.93	1.31		
Seeds per Panicle (Nos.)	156.82	62.00	305.00	22.11	29.97	3719.51	3604.68	114.83		
Test weight (g)	1.93	0.83	3.39	0.17	0.23	0.379	0.372	0.007		
Yield per Plant (g)	11.85	5.48	24.79	1.21	1.64	19.95	19.61	0.34		
Kernel Length (mm)	6.05	4.00	8.15	0.38	0.52	1.53	1.49	0.03		
Kernel Breadth (mm)	1.98	1.44	3.21	0.15	0.20	0.21	0.21	0.005		
Kernel L/B Ratio	3.18	1.91	5.01	0.26	0.35	0.97	0.95	0.01		
KLAC (mm)	9.50	6.10	13.57	0.44	0.59	4.82	4.78	0.04		
KBAC (mm)	2.90	2.06	4.66	0.28	0.38	0.36	0.35	0.01		
Elongation Ratio	1.56	1.12	2.03	0.09	0.12	0.036	0.034	0.002		
Alkali Spread Value (ALKD)	4.50	2.50	6.70	0.64	0.87	1.54	1.44	0.09		

Table 5: Estimates of genotypic and phenotypic coefficient of variation, he ritability and genetic advance for 15 characters in scented rice (Oryza sativa L.) in kharif 2013

Character	PCV	GCV	CV	Heritability	Genetic Advance		GA % of Mean		
	%	%	%	%	At 5% SI	At 1% SI	At 5% SI	At 1% SI	
Days to 50 per cent Flowering	23.86	23.80	1.70	99.5	47.145	60.419	48.917	62.69	
Days to Maturity	18.70	18.61	1.84	99.0	47.706	61.137	38.169	48.91	
Days to Maturity	15.78	15.65	2.02	98.3	45.964	58.559	31.984	40.989	
Effective Panicle (Nos.)	31.98	31.20	7.01	95.2	6.257	8.018	62.717	80.375	
Panicle Length(cm)	10.17	9.04	4.66	79.0	4.065	5.210	16.553	21.213	
Seeds per Panicle (Nos.)	38.88	38.28	6.83	96.9	121.756	156.037	77.64	99.50	
Test weight (g)	31.85	31.56	4.31	98.2	1.246	1.596	64.417	82.55	
Yield per Plant (g)	37.68	37.35	4.96	98.3	9.043	11.59	76.274	97.75	
Kernel Length (mm)	20.44	20.21	3.08	97.7	2.493	3.195	41.16	52.75	
Kernel Breadth (mm)	23.53	23.23	3.70	97.5	0.937	1.20	47.27	60.58	
Kernel L/B Ratio	30.97	30.71	4.01	98.3	1.998	2.56	62.73	80.40	
KLAC (mm)	23.10	22.99	2.24	99.1	4.482	5.74	47.14	60.41	
KBAC (mm)	20.97	20.43	4.70	95.0	1.190	1.52	41.02	52.57	
Elongation Ratio	12.18	11.82	2.94	94.2	0.370	0.47	23.63	30.29	
Alkali Spread Value (ALKD)	27.58	26.68	6.97	93.6	2.397	3.072	53.19	68.16	

[MS received: February 17, 2017]

[MS accepted: March 03, 2017]