SEED QUALITY AS INFLUENCED BY ORGANIC AND INORGANIC FERTILIZERS IN ONION (Allium cepa L.)

ROHIT KUMAR AND *VADDORIA, M. A.

DEPARTMENT OF SEED SCIENCE & TECHNOLOGY JUNAGADH AGRICULTURE UNIVERSITY JUNAGADH – 362 001, GUJARAT (INDIA)

*EMAIL: mavaddoria@jau.in

ABSTRACT

A study was carried out in order to find out the influence of organic and inorganic fertilizers on yield and quality of onion cv. GWO-1 seed during Rabi 2013-14. The experiment was laid out in a completely randomized design with eleven treatments with four repetitions. Two kinds of organic manures, Farm Yard Manure (FYM) and Vermicompost (VC), alone and in combination with two biofertilizers (Azotobacter and PSB) and chemical fertilizers (RDF) were tested in comparison with control. The results revealed that the shoot length (cm), root length (cm), shoot fresh weight (g), root fresh weight (g), shoot dry weight (g), root dry weight (g), vigour index length and vigour index mass were significantly influenced by different treatments. Among the treatments combinations, vermicompost alone or vermicompost with PSB and Azotobactor was found to be superior over all the other treatments in respect of seed quality parameters.

KEY WORDS: Organic & inorganic fertilizers, seed quality, onion

INTRODUCTION

The bulbous vegetable onion (Allium cepa, var. cepa L.) is the most important species of Allium group and is regarded as the single most important vegetable spices in the world after tomato and is considered as top export commodity among most vegetables. It is a short duration and quick growing having various uses vegetables, spices such medicinal. Onion bulb is rich in especially calcium minerals, phosphorus besides having fairly good quantities of carbohydrates, proteins and vitamin C. The pungency in onion is due to a volatile compound known as allyl-propyl disulphide, which is sulphur rich compound (Anonymous, 1978).

Onion seed is usually produced in the temperate and sub-tropical countries. Onion is a biennial crop for the purpose of seed production. In one season, bulbs are produced from seed and in the second season, bulbs are replanted to produce seed. Onion seeds are poor in keeping quality and loose viability within a year. Therefore, it is essential to produce seeds fresh and use the same for bulb production. It is highly cross pollinated crop which is facilitated by protandrous type of flowers; cross pollination is effected by honeybees (Vanangamudi et al., 2006). quality The seed production programmes depends upon quality of seeds, agronomic practices and plant protection measures taken to produce the healthy and vigorous crop. Among

the agronomic practices, nutrient management through organic sources is considered as an important factor for production.

Generally, vegetables require large quantity of major nutrients like nitrogen, phosphorus and potassium, in addition to secondary nutrients such as calcium and sulphur for better growth, fruit, seed yield and quality. The cost of inorganic fertilizers has been enormously increasing to an extent that they are out of reach of the small and marginal farmers. The problem of high cost of chemical fertilizers fully meet out nutrient requirement of crop by single source, therefore, integrated nutrients management such as organic matters like Farm Yard Manure (FYM), vermicompost, poultry manure and biofertilizers use has become necessary. Hence, an attempt has been made to know the impact of organic inorganic fertilizers manure, biofertilizers on seed quality of onion.

MATERIALS AND METHODS

The experiment was conducted to study the "Effect of organic and inorganic fertilizers on yield and quality of onion (Allium cepa L.) seed". The laboratory experiment was carried out during rabi 2013-14 at Department of Seed Science and Technology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat. The experiment out in a completely laid randomized design design with four repetitions and eleven treatments viz. $T_1 = RDF @ 75:60:50 \text{ kg NPK} / \text{ha},$ $T_2 = FYM @ 20 t/ha, T_3 =$ Vermicompost @ 5 t/ha, $T_4 = RDF +$ PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha, $T_5 = 50\%$ RDF (37.5: 30: 25 NPK) + 50% FYM (10 t/ha), $T_6 = 50\%$ RDF (37.5: 30: 25 NPK) + 50% vermicompost (2.5 t/ ha), $T_7 = 50\%$ FYM (10 t/ha.) + 50% vermicompost $(2.5 \text{ t/ ha.}), T_8 = 50\% \text{ RDF } (37.5: 30:$

25 NPK) + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha, $T_9 = 50\%$ FYM (10 t/ha.) + PSB @ 5 kg/ha +Azotobactor @ 5 kg/ha, $T_{10} = 50\%$ vermicompost (2.5 t/ ha.) + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha and T₁₁ = Control, using onion cv. GWO-1. The observations were recorded on 9 characters viz... germination percentage, shoot length (cm), root length (cm), shoot fresh weight (g), root fresh weight (g), shoot dry weight (g), root dry weight (g), vigour index length and vigour index mass. The germination test was conducted in the laboratory as per the ISTA (1996) by adopting "between paper method" in four repetitions of each treatment of 100 seeds drawn at randomly from treatment combination uniformly placed on germination paper and were kept in germinator maintaining of 20°C temperature and 90 ± 2 per cent relative humidity. The first and final counts were taken on 6th 21^{st} days, respectively. The statistical analysis was carried out according to the method given by Panse and Sukhatme (1985).

RESULTS AND DISCUSSION

The effects of different organic and inorganic fertilizer treatments in respect to germination percent, shoot fresh weight and vigour index mass in onion were found statistically non-significant.

The shoot length was significantly influenced by different and inorganic organic fertilizer The shoot length treatments. significantly superior under treatment vermicompost @ 5 t/ha, in which the highest shoot length (8.60 cm) was recorded and remained at top position followed by vermicompost @ 2.5 t/ha + PSB @ 5 kg/ha +Azotobactor @ 5 kg/ha (8.41 cm) treatment. The lowest shoot length (7.5 cm) was recorded in control. The

similar findings were also made by Giraddi (1993), Jayathilake *et al.* (2003) and Bendegumbal *et al.* (2008) in onion.

The root length was significantly influenced by different organic and inorganic fertilizer treatments. The maximum root length (5.89 cm) was recorded from the application of vermicompost @ 2.5 t/ha + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha followed by FYM @ 10 t / ha + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha (5.73 cm), vermicompost @ 5 t/ha (5.68 cm) and FYM @ 20 t/ha (5.64 cm), whereas lowest root length (4.57 cm) was recorded in control. The results are in conformity with the findings of Giraddi (1993), Jayathilake et al. (2003) and Bendegumbal et al. (2008) in onion.

The root fresh weight was differed significantly due to different treatments of organic and inorganic fertilizers and their combinations. The application of vermicompost @ 2.5 t/ha + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha resulted in significantly the highest root fresh weight (0.019 g), which was at par with FYM @ 10 t/ ha + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha (0.018 g) and vermicompost @ 5 t/ ha (0.018 g), whereas the lowest root fresh weight (0.013 g) was observed in control.

Different organic and inorganic fertilizer treatments showed statistically significant variation on shoot dry weight. Significantly higher shoot dry weight (0.0098 g) was application recorded in the vermicompost @ 2.5 t/ha + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha that was closely followed by vermicompost @ 5 t/ ha (0.0093 g), FYM @ 10 t/ha (50%) + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha (0.0093 g) and FYM @ 10 t/ha + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha (0.0093 g), whereas the

lowest shoot dry weight (0.0078 g) was observed in control. These results are in agreement with those reported by Warade *et al.* (1996), Varu *et al.* (1997) and Gupta *et al.* (1999) in onion.

The application of vermicompost @ 2.5 t/ ha + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha recorded significantly the highest root dry weight (0.0027 g), which was at par with FYM @ 20 t/ha (0.0026 g) and vermicompost @ 5 t/ha (0.0025 g), whereas the lowest root dry weight (0.0020 g) was observed in RDF @ 75: 60: 50 kg NPK per ha. The results are in conformity with the findings of Warade et al. (1996), Varu et al. (1997) and Gupta et al. (1999) in onion.

A statistically significant variation was recorded in term of vigour index length for different organic inorganic fertilizer treatments. The maximum vigour length index in (1380.30)was recorded the application of vermicompost @ 2.5 t/ha + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha, which was closely followed by vermicompost @ 5 t/ha (1370.88). The minimum vigour index length (1092.79) was recorded in control. These results are in accordance with findings of Balaraj (1999) in chilli and Goudappalavar (2000) in tomato.

CONCLUSION

From the above results, it can be concluded that vermicompost alone or vermicompost with PSB and Azotobactor was found to be superior over all the other treatments in respect of seed quality parameters of onion, therefore, it is better to use organic fertilizers in place of inorganic fertilizers in quality seed production programme of onion.

REFERENCES

Anonymous (1978). National Food Review, United States

- Department of Agriculture, p. 272.
- Balaraj, R. (1999). Investigations of seed technological aspects in chilli (*Capsicum annuum*L.). Ph.D. Thesis (Unpublished), University of Agricultural Sciences, Dharwad.
- Bendegumbal, S. C.; Sajjan, A. S.; Vyakaranahal, B. S.; Malbasari, T. A.; Hosamani, R. M. and Patil, A. B. (2008). Studies on organic seed production in onion (*Allium cepa* L.). *Karnataka J. Agric. Sci.*, **21**(1): 120-121.
- Giraddi, R. A. (1993). Vermiculture and role in agriculture. In:

 Proc. Course on the Officers of the State Department of Agriculture,

 Karnataka.Department of
 - Agricultural Microbiology, Univ. Agric. Sci. Dharwad, Pp. 50-54.
- Goudappalavar, H. B. (2000). Effect of mother plant nutrition and chemical spray on seed yield and quality in tomato (Lycopersicon esculentumMill.). M.Sc. (Agri) Thesis (Unpublished), University of Agricultural Sciences, Dharwad.
- Gupta, R. P.; Sharma, V. P.; Singh, D. K. and Srivastava, K. J. (1999). Effect of organic manures and inorganic fertilizers on growth, yield and quality of onion

- variety Agrifound Dark Red. News Letter 19, 2/3thedn. Pp. 7-11. National Hortic. Res. and Dev. Found.
- Vanangamudi, K.; Natarajan, N.; Srimathi, P.; Natarajan, T. and Bhaskaran, M. (2006). Advances in seed science and technology. Vol. 2, Agribios publishers, Jodhpur, India.
- International Seed Testing Association (1996). International Rules for Seed Testing. Annexure chapter -5. *Seed Sci. & Tech.*, **4**: 151-177.
- Jayathilake, P. K. S.; Reddy, I. P.; Srihari, D.; Reddy, K. R. and Neeraja, G. (2003). Integrated nutrient management in onion (Allium cepa L.). Tropical Agric. Res., 15: 19.
- Panse, V. G. and Sukhatme,
 P. V. (1985). "Statistical
 Methods for Agricultural
 Workers" Indian Council of
 Agricultural Research, New
 Delhi.
- Varu, D. K.; Vhora, P. H. and Kikani, K. P. (1997). Effect of organic and inorganic fertilizers on onion. *Gujarat Agric. Uni. Res. J.*, **22(2)**:116-118.
- Warade, S. D.; Desale, S. B. and Shinde, K. G. (1996). Effects of organic, inorganic and biofertilizers on yield of onion bulbs cv. B 780. *J. Maharashtra Agric. Univ.*, **20**(3): 467 468.

Table 1: Effect of organic and inorganic fertilizers on seed quality in onion cv. GWO-1

Treatments	Germinatio n (%)	Shoot Length (cm)	Root Length (cm)	Shoot Fresh Weight (g)	Root Fresh Weight (g)	Shoot Dry Weight (g)	Root Dry Weight (g)	Vigour Index Length (Vigour Index I)	Vigour Index Mass (Vigour Index II)
$T_1 = RDF @ 75:60:50 \text{ kg NPK} / \text{ ha}$	91.50	8.01	4.60	0.18	0.015	0.0083	0.0020	1141.01	0.94
T ₂ = FYM @ 20 t/ha	96.25	8.06	5.64	0.19	0.014	0.0093	0.0026	1318.62	1.14
T ₃ = Vermicompost @ 5 t/ha	96.00	8.60	5.68	0.18	0.018	0.0085	0.0025	1370.88	1.06
T ₄ = RDF + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha	91.50	8.08	5.45	0.18	0.016	0.0083	0.0023	1237.77	0.97
T ₅ = 50% RDF (37.5: 30: 25 NPK) + 50% FYM (10 t/ha)	94.00	7.82	5.16	0.18	0.014	0.0085	0.0023	1219.65	1.01
$T_6 = 50\%$ RDF (37.5: 30: 25 NPK) + 50% vermicompost (2.5 t/ha)	95.25	8.08	5.44	0.18	0.014	0.0088	0.0023	1287.78	1.05
$T_7 = 50\%$ FYM (10 t/ha.) + 50% vermicompost (2.5 t/ha.)	94.50	7.68	5.05	0.18	0.017	0.0083	0.0023	1202.99	0.99
T ₈ = 50% RDF (37.5: 30: 25 NPK) + PSB @ 5 kg/ha + <i>Azotobactor</i> @ 5 kg/ha	91.50	7.97	5.20	0.18	0.014	0.0085	0.0023	1205.06	0.99
T ₉ = 50% FYM (10 t/ha.) + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha,	92.75	7.94	5.73	0.18	0.018	0.0093	0.0023	1267.89	0.82
$T_{10} = 50\%$ vermicompost (2.5 t/ ha.) + PSB @ 5 kg/ha + Azotobactor @ 5 kg/ha	96.00	8.41	5.89	0.20	0.019	0.0098	0.0027	1380.30	1.20
$T_{11} = Control$	90.50	7.50	4.57	0.17	0.013	0.0078	0.0022	1092.79	0.94
S. Em. <u>+</u>	1.49	0.18	0.14	0.005	0.0005	0.0003	0.0001	20.27	0.08
C. D. at 5%	NS	0.51	0.41	NS	0.0014	0.0009	0.0003	58.35	NS

[MS received: August 19,2014]

[MS accepted: September 6, 2014]