HYBRID VIGOUR FOR YIELD, ITS COMPONENTS AND MAJOR DISEASES IN PEARL MILLET [Pennisetum glaucum (L.) R. BR.]

BAGRA, S. K.; *MUNGRA, K. D.; PARMAR, S. K. AND DETROJA, A. C.

PEARL MILLET RESEARCH STATION JUNAGADH AGRICULTURAL UNIVERSITY JAMNAGAR-361 006, GUJARAT, INDIA

*EMAIL: kdmungra@jau.in

ABSTRACT

The present investigation in pearl millet [Pennisetum glaucum (L.) R. Br.]" was carried out at Pearl Millet Research Station, Junagadh Agricultural University, Jamnagar during Kharif 2015 with an objectives to generate information on heterosis through diallel analysis. The experimental material comprised of 8 parents and resultant 28 hybrids along with a standard check variety GHB 732 were conducted in a randomized block design with three replications. High heterosis was observed for plant height, number of effective tillers per plant, ear head length, fodder yield per plant, harvest index, whereas the magnitude of heterosis was moderate for days to 50 per cent flowering, days to maturity, blast score and low for downy mildew disease. The range of heterobeltiosis was from -31.43 to 140.75 per cent for grain yield per plant and the highest heterobeltiosis was registered by the cross ICMB₁ 94555 x ICMB₄ 05333 followed by ICMB4 10444 x ICMB4 05333 and ICMB1 94555 x ICMB4 10444, while the standard heterosis ranged from -50.90 to 51.24 % for grain yield per plant and the cross ICMB₁ 95444 x JMSB₁ 20102 showed the highest standard heterosis for this trait followed by ICMB₁ 95444 x ICMB₄ 05333, ICMB₅ 01777 x ICMB₁ 04999 and JMSB₁ 20102 x JMSB₁ 20064. These crosses also exhibited desirable heterosis for important yield attributes suggesting that the heterosis for grain yield per plant was associated with heterosis for component characters.

KEY WORDS: Heterosis, heterobeltiosis, pearl millet, standard heterosis

INTRODUCTION

Pearl millet is world's sixth important crop. In India, it is fourth most important food grain crop after rice, wheat and sorghum. Pearl millet [Pennisetum glaucum (L.) R. Br.] belongs to family Poaceae and genus Pennisetum. It is a highly crosspollinated crop with protogynous flowering and wind borne pollination mechanism, which fulfils one of the essential biological requirements for hybrid development.

Pearl millet is an embodiment of unique features like allogamy, protogyny, male sterility, huge genetic variability and remarkable geographic diversity. but the breeding improvement work in earlier days was neglected because it was considered to be crop of low value. But now-a-days the grain and fodder are the main purposes of cultivation of pearl millet India and other countries. Nutritionally, the pearl millet grains are rich source of protein (9-15%), fat

(5%), carbohydrates (67%), mineral matters (2-7%), high energy value (>360 Kcal/100g), high Fe, Zn and Ca compared to other cereals. Thus, it is the cheapest source not only energy and protein, but also for micronutrients such as Fe and Zn. It is rich in vitamin-A and B, thiamin and riboflavin content and imparts substantial energy to the body with easy digestibility (*Pal et al.*, 1996). Development of Tift-23-A male sterile source by Burton (1965) opened new vista for the exploitation of heterosis in pearl millet.

Though per se performance is taken selection criterion. information on magnitude of heterosis, combining ability and gene action for its components grain vield and involved in inheritance is more helpful in selecting appropriate parents and desirable cross combinations commercial exploitation of hybrid The present study vigour. therefore, undertaken to determine the extent of heterosis in pearl millet and to identify heterotic hybrids under rainfed condition.

MATERIAL AND METHODS

The eight diverse maintainer lines were crossed in all possible combinations, excluding reciprocals, to make a diallel set during summer-2015. Thus, the experimental materials for the present study consisted of the 28 crosses and their 8 parents along with hybrid GHB 732 as a standard check. This experiment was laid out at Pearl Millet Research Station, JAU, Jamnagar during kharif 2015. Each entry was represented by a single row of 4.0 m length spaced at 60 x 10-12 cm. All the recommended cultural practices were followed for raising the good crop. The observations were recorded on five randomly selected competitive plants for each entry, in each replication for various characters viz., days to 50 per cent flowering,

days to maturity, plant height (cm), number of effective tillers per plant, ear head length (cm), grain yield per plant (g), downy mildew (%) and blast disease Score. The mean values were used in statistical analysis. Estimates of heterosis were calculated according to Fonseca and Patterson (1968). Heterobeltiosis was calculated as the deviation of F_1 from the better parent (Fonseca and Patterson, 1968) and standard Heterosis was calculated as the deviation of F₁ from the standard check and expressed as per cent basis. The significance of heterosis, was tested by using 't' test. The blast disease severity was recorded in score at the hard-dough stage using a 1-9 scale developed progressive International Rice Research Institute (IRRI), Philippines for rice blast.

RESULTS AND DISCUSSION

The analysis of variance for the experimental design (Table 1) showed significant differences among the genotypes and hybrids for all the characters except for downy mildew, parents showed significant differences for all the characters. This indicated the presence of phenotypic variability in the material selected for the present investigation for grain vield and important yield attributes. The estimates of variance due to parents vs. hybrids were significant for all the traits except for downy mildew, which indicated the presence of high level of mean heterosis due to selection of female and male lines with diverse genetic origin.

Pearl millet is grown in erratic conditions of rainfall in marginal lands. Early flowering and maturity is desirable in pearl millet for escaping the drought conditions. Hence, negative heterosis is useful for days to 50 per cent flowering and days to maturity. In the present study, the degree of both the heterosis varied

from cross to cross for all the characters studied (Table 2). With respect to days to 50% flowering, 14 crosses showed significant negative heterobeltiosis for earliness, there by suggesting the importance of dominance for earliness. The highest negative heterobeltiosis for days to 50 per cent flowering observed in cross combination JMSB₁ 20102 x JMSB₁ 20064 (-12.41 %) followed by ICMB₅ 01777 x JMSB₁ 20064 (-10.34 %). None of the crosses showed negative and significant heterosis over standard check. With respect to days to maturity, 14 hybrids showed significant negative heterobeltiosis and no cross showed significant desirable heterosis standard check for days to maturity. The highest significant and negative heterobeltiosis was observed in cross ICMB₅ 01777 x ICMB₁ 04999 (-6.38%) followed by JMSB₁ 20064 x ICMB₁ 04999 (-6.33 %). Similar results for days to flowering and maturity in pearl millet was also observed by Chaudhary et al. (2012) and Davda et al. (2012).

The plant height is regarded as a favourable character due to important role of stem as a source supplementing assimilates during grain development. Nineteen crosses showed significant and positive heterobeltiosis, whereas four crosses showed significant and positive standard heterosis for this trait. The highest significant and positive heterobeltiosis was observed in cross ICMB₁ 94555 x ICMB₄10444 (44.96 %) followed by 95444 x ICMB₁ (40.54%). The hybrid, ICMB₅ 01777 x JMSB₁ 20064 (23.84%) was superior for tallness over standard check followed by ICMB₅ 01777 x JMSB₁ 20102 (18.09%). These results are in confirmation to the findings Vaghasiya (2009) and Chaudhary et al. (2012).

As the number of tillers is a desirable character in pearl millet, the greater number of tillers is considered as a positive character. Five and four crosses displayed significant desirable (positive) heterobeltiosis and standard heterosis, respectively for this trait. The highest significant and positive heterobeltiosis was observed in cross ICMB₅ 01777 x JMSB₁ 20064 (41.76 %) followed by JMSB₁ 20064 x ICMB₁ 20064 (36.36%). The highest standard heterosis was registered in the cross JMSB₁ 20064 x ICMB₁ 04999 (51.52 %) followed by ICMB₁ 94555 x ICMB₄ 10444 (35.35 %). Bhadalia et al. (2011) have also reported the positive and significant heterosis for number of tillers per plant in pearl millet.

In case of ear head length, 14 and 3 hybrids manifested significant and positive heterosis over better parent standard check. and The highest respectively. heterobeltiosis was recorded by the cross ICMB₅ 01777 x JMSB₁ 20064 (50.99 %) followed by ICMB₁ 95444 x ICMB₄ 10444 (45.27 %), while, the cross ICMB₅ 01777 x JMSB₁ 20064 (25.17 %) showed the highest standard heterosis followed by ICMB₁ 95444 x ICMB₄ 10444 (19.44%). Heterosis for ear head length in pearl millet has also been reported by earlier workers Jethava et al. (2012).

In the present investigation, the degree of heterobeltiosis and standard heterosis varied considerably for grain yield and its components. Yield is a character of economic importance, for which considerable magnitude of heterosis was registered in a number of crosses. Out of 28 crosses, 14 and 9 crosses manifested significant and positive heterobeltiosis and standard heterosis, respectively for grain yield per plant. The highest heterobeltiosis was registered by the cross ICMB₁

94555 x ICMB₄ 05333 (140.75%) followed by ICMB₄ 10444 x ICMB₄ 05333 (132.60 %). The cross ICMB₁ 95444 x JMSB₁ 20102 (51.24 %) showed the highest standard heterosis for this trait followed by ICMB₁ 95444 x ICMB₄ 05333 (40.93 %), (Table 2). The manifestation of heterosis for grain yield per plant in pearl millet has been reported by Jethava *et al.* (2012) and Bhadalia *et al.* (2013).

In the present investigation, out crosses showed of 28 crosses 07 significant and negative heterosis over better parent for downy mildew but none of cross showed significant and negative heterosis over standard check. highest heterobeltiosis recorded by the cross JMSB₁ 20102 x ICMB₄ 10444 (-49.38%) followed by $JMSB_1 20102$ $x JMSB_1$ 20064 (49.38%). Heterosis for downy mildew in pearl millet has also been reported by earlier worker like Maryam (2015). In case of blast disease, out of 28 crosses 10 crosses showed significant and negative heterosis over better parent for blast but none of crosses showed significant and heterosis over standard check. The highest heterobeltiosis was recorded by the cross ICMB₄ 10444 x ICMB₄ (-42.17 %) followed by 05333 ICMB₁ 94555 x ICMB₅ 01777 (-38.50 %). Heterosis for blast content in pearl millet has also been reported by earlier worker like Zhang et al. (2000).

CONCLUSION

The magnitude of heterosis varied from cross to cross for all the characters studied. The conspicuous heterotic response in certain crosses and low in others, revealed the nature of gene actions, which varied according to the genetic makeup of the parents. Significant level of positive and negative heterobeltiosis and standard heterosis in several crosses for most of the traits also indicated

genetic diversity of parents used in present investigation. The cross ICMB₁ 95444 x JMSB₁ 20102 (51.24 %) showed the highest standard heterosis for grain yield per plant followed by ICMB₁ 95444 x ICMB₄ 05333 (40.93 %) could be exploited for the development of hybrids by the use of male sterile counterpart of B lines used in these crosses.

REFERENCES

- Burton, G. W. (1965). Pearl millet Tift 23A released. *Crop Sci.*, **17**: 19.
- Bhadalia, A. S.; Dhedhi, K. K. and Joshi, H. J. (2011). Heterosis studies in pearl millet from diallel analysis. *Int. J. Crop Improve.* **2**(2):132-136.
- Bhadalia, A. S.; Dhedhi, K. K.and Joshi, H. J. (2013). Heterosis studies in diallel crosses of pearl millet. *J. Agric. Res. Tech..*, **38**(3): 360-365.
- Chaudhary, V. B.; Dhedhi, K. K.; Joshi, H. J. and Sorathiya, J. S. (2012). Genetic variability for grain iron, zinc, protein, yield and yield attributes in pearl millet (*Pennisetum glaucum* (L) R. Br.). *Madras Agric. J.*, **99**(7-9): 465-468.
- Davda, B. K.; Dhedhi, K. K. and Dangaria, C. J. (2012). Evaluation of heterosis in pearl millet under rainfed condition. *Int. J. Pl. Sci.*, **7**(1): 74-78.
- Fonseca, S. and Patterson, F. L. (1968). Hybrid vigour in a seven parent diallel cross in common winter wheat (*Triticum aestivum* L.). *Crop Sci.*, **8**: 85-88.
- Jethava, A. S.; Raval Lata; Madriya, R. B.; Mehta, D. R. and Mandavia Chetana. (2012). Heterosis for grain yield and its related characters in pearl millet. *Elect. J. Plant Breed.*, **3**(3): 848-852.

- Maryam, A. H. (2015). Evaluation of heterosis in pearl millet (*Pennisetum glaucum* (L.) R. Br) for agronomic traits and resistance to downy mildew (*Sclerospora graminicola*). *J. Agric. Crops*, **1**(1): 1-8.
- Pal, M.; Deka, J. and Rai, R. K. (1996). Fundamentals of Cereals Crop Production. Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- Vaghasiya, V. D.; Dangaria, C. J. and Dhedhi K. K. (200)9. Heterosis

- studies in B x R crosses for selection of superior females for A-line development in pearl millet. *Agric. Sci. Digest.*, **29**(2): 84-88.
- Zhang, C. W.; Zheng, J. K.; Jiang, K. F.; Zhu, Y. C. and Wan, X. Q. (2000). Genetic analysis for heterosis of resistance to leaf blast in hybrid rice. *J. Acta Phytopathologica Sinica*. **30**(1): 7-12.

Table 1: Analysis of variance for experimental design for different characters in pearl millet

Source	d.f.	Days to 50% Flowering	Days to Maturity	Plant Height (cm)	No. of Effective Tillers per Plant	Ear Head Length (cm)	Grain Yield per Plant	Downy Milde w Disease	Blast Disease
Replications	2	1.676	1.750	51.420	0.435	0.007	4.825*	1.064	0.159
Genotypes	35	8.881**	10.086**	2446.679**	0.810**	53.073**	544.042**	1.064	0.247**
Parents	7	0.423**	12.000**	1056.313**	0.431**	22.316**	193.070**	4.788**	0.395**
Hybrids	27	8.026**	9.272**	2383.878**	0.877**	49.700**	486.617**	0.000	0.199**
P. vs. H.	1	21.191**	18.667**	13874.860**	1.647**	359.453**	4551.321**	3.724	0.515**
Error	70	2.209	2.445	19.276	0.142	4.096	23.205	1.064	0.064

^{*, **} Significant at 5% and 1% levels, respectively

Table 2: Best crosses on the basis of heterobeltiosis and standard heterosis for various characters in pearl millet

Cr No	Characters	Best Crosses				
SI. No.	Characters	Heterobeltiosis	Standard heterosis			
1		JMSB ₁ 20102 x JMSB ₁ 20064	-			
	Days to 50% Flowering	ICMB ₅ 01777 x JMSB ₁ 20064	-			
		ICMB ₁ 95444 x JMSB ₁ 20064	-			
2		ICMB ₅ 01777 x ICMB ₁ 04999	-			
	Days to Maturity	JMSB ₁ 20064 x ICMB ₁ 04999	-			
		JMSB ₁ 20102 x ICMB ₁ 04999	-			
3		ICMB ₁ 94555 x ICMB ₄ 10444	ICMB ₅ 01777 x JMSB ₁ 20064			
	Plant Height (cm)	ICMB ₁ 95444 x ICMB ₁ 04999	ICMB5 01777 x JMSB ₁ 20102			
		ICMB5 01777 x JMSB ₁ 20064	ICMB ₅ 01777 x ICMB ₄ 05333			
4	No of Effective Tillens	ICMB ₅ 01777 x JMSB ₁ 20064	JMSB ₁ 20064 x ICMB ₁ 04999			
	No. of Effective Tillers	JMSB ₁ 20064 x ICMB ₁ 04999	ICMB1 94555 x ICMB ₄ 10444			
	per Plant	ICMB ₁ 95444 x JMSB ₁ 20064	ICMB ₅ 01777 x JMSB ₁ 20064			
5		ICMB ₅ 01777 x JMSB ₁ 20064	ICMB ₅ 01777 x JMSB ₁ 20064			
	Ear Head Length	ICMB ₁ 95444 x ICMB ₄ 10444	ICMB ₁ 95444 x ICMB ₄ 10444			
		JMSB ₁ 20102 x JMSB ₁ 20064	JMSB ₁ 20064 x ICMB ₄ 05333			
6		ICMB ₁ 94555 x ICMB ₄ 05333	ICMB ₁ 95444 x JMSB ₁ 20102			
	Grain Yield per Plant	ICMB ₄ 10444 x ICMB ₄ 05333	ICMB ₁ 95444 x ICMB ₄ 05333			
		ICMB ₁ 94555 x ICMB ₄ 10444	ICMB ₅ 01777 x ICMB ₁ 04999			
7		JMSB ₁ 20102 x ICMB ₄ 10444	-			
	Downy Milde w Disease	JMSB ₁ 20102 x JMSB ₁ 20064	-			
		JMSB ₁ 20102 x ICMB ₁ 04999	-			
8		ICMB ₄ 10444 x ICMB ₄ 05333	ICMB ₄ 10444 x ICMB ₄ 05333			
	Blast Disease	ICMB ₁ 94555 x ICMB ₅ 01777	-			
	<u> </u>	ICMB ₄ 10444 x JMSB ₁ 20064	-			

[MS received: March 24, 2017]

[MS accepted: March 26, 2017]