INFLUENCE OF PRE-SOWING MICROBIAL AND FUNGICIDES SEED TREATMENTS ON SEED OUALITY IN GROUNDNUT (Arachis hypogaea L.)

UNJIA, NIRAV N., *VADDORIA, M. A. AND PATEL, N.B.

DEPARTMENT OF SEED SCIENCE AND TECHNOLOGY COLLEGE OF AGRICULTURE JUNAGADH AGRICULTURAL UNIVERSITY JUNAGADH - 362 001, GUJARAT. INDIA

*E. Mail::mavaddoria@jau.in

ABSTRACT

The present study was undertaken during three different seasons of year 2011 viz., summer, kharif and rabi, with a view to examine the effect of pre-sowing microbial and fungicides seed treatments on seed quality in groundnut cv. Gujarat Groundnut-20 (GG-20) under laboratory conditions. The seeds were first soaked in distilled water (hydro priming) for six hours followed by drying under shade. The biological strains viz., Rhizobiumleguminosarum, **Pseudomonas** fluorescens, Trichodermaviride, Trichodermaharzianum and chemical fungicides viz., Thirum, Vitavax, Carbendazim, Tebuconazole and Control (untreated seeds) were applied at the time of germination test. All the treatments significantly affected germination percentage, first count of germination, speed of germination, shoot length, root length, root fresh weight, shoot fresh weight, root dry weight, shoot dry weight, seedling length, seedling dry weight, vigour index length and vigour index mass during all the three seasons (summer, kharif, and rabi) as well as pooled over periods. The enhancing effect of seed inoculation was also noticed with Rhizobacteria for all the characters which might be attributed due to RNA and protein metabolism as enhanced by priming, improved N₂- fixing and phosphate solubilizing capacity of bacteria as well as the ability of micro-organism to produce growth promoting substances. It could be concluded that seed priming could be used as an effective tool for invigouration of groundnut seeds for vigour enhancement.

KEY WORDS: Arachishypogaea, germination, priming, quality, seed treatment, vigour index

INTRODUCTION

The groundnut (*Arachis hypogaea* L.) is one of the most important oilseed crops, commercially popular due to its superior edible oil quality and protein in the meal. It is highly self-pollinated in nature (Knauft and Wynne, 1995). India accounts for about 40 per cent of the world area and 30 per cent of the world production of groundnut. In India, about 91 per cent of total groundnut area is confined to the states of Gujarat, Andhra Pradesh, Karnataka, Tamil Nadu, Maharashtra

and Orissa. The rest of the area and production is scattered mainly in the states of Rajasthan, Utter Pradesh, Madhya Pradesh and Punjab (Chopra, 2001). The average area under groundnut cultivation in India during 2012-13 was 5.00 million hectares with the production of 4.95 million tones and productivity of 990 kg/ha (USDA, 2013). Gujarat, Andhra Pradesh, Tamil Nadu and Karnataka together account for 77 per cent of the area and almost 75 per cent of the

production of groundnut in India (USDA, 2013).

In Gujarat, the region of the Saurashtra considered to be the groundnut bowl of the country. The under groundnut average area cultivation in Gujarat during 2012 stood at 16.60 lakh hectares with production of 25.95 lakh tones and productivity of 1563 kg/ha(DOA, 2013). The average area under groundnut cultivation in Junagadh district during 2012 was 3.05 lakh hectares with production of 2.35 lakh tones and productivity of 770 kg/ha (DOA, 2013). Groundnut is cultivated the districts of Guiarat state, however, about 82 per cent areas is covering by Junagadh, Rajkot, Amreli and Surendranagar districts of Saurashtra region. Groundnut crop is grown as a rainfed duringkharif season, but it is also taken during summer season, wherever the irrigation facilities are available. The crop is grown as monoculture in Saurashtra region of Gujarat. Junagadh, Rajkot, Amreli, Jamnagar, Bhavnagar and Kutch districts of Gujarat State contribute about 78.52 per cent of total production of of groundnut Guiarat State(Anonymous, 2010). Unfavorable environmental condition is the major cause of poor plant stand establishment and low crop yield. However, rapid germination and good seedling growth could emerge and produce better roots which may results in better crop establishment and higher yield (Ashraf and Foolad, 2005). Pre-sowing priming improves seed performance, as the seed is brought to a stage where the metabolic processes are already initiated giving a head start over the unprimed seed. Priming also repairs any metabolic damage increased by the dry seed, including that of the nucleic acids, thus, fortifying the metabolic

machinery of the seed. Another beneficial effect of priming is the synchronization of the metabolism of all the seeds in lot, thus, ensuring uniform emergence and growth in the field. Further, bio-priming (priming with beneficial micro-organisms that can improve plant performance) on the seed is effective to control seed and soil borne pathogen at the time of germination. Therefore, seed priming is a viable and economic approach to enhance rapid and uniform emergence, high vigour and better yields in legumes, vegetables, flowering and field crops. Thus, the study was initiated to study the influence of presowing microbial and fungicidal seed treatments on seed quality groundnut cultivar Gujarat Groundnut-20 (GG-20)under laboratory conditions.

MATERIALS AND METHODS

The present study was undertaken at Junagadh Agricultural University, Junagadh during the year in three different seasons. summer, kharifand rabi. Seeds of groundnut cultivar Guiarat Goundnut-20 (GG-20) were soaked in distilled water for six hours and dried under shade immediately after soaking. The used were: treatments Hydropriming (seed soaking in water for 6 hours and shade dried), $T_2 =$ Rhizobium leguminosarum(5g/kg), T_3 = Pseudomonas fluorescens(5g/kg), T₄ $Trichodermaviride(5g/kg), T_5 =$ $Trichodermaharzianum(5g/kg), T_6 =$ Thirum (3g/kg), $T_7 = Vitavax$ (3g/kg), $T_8 = Carbendazim (3g/kg),$ $T_0 =$ Tebuconazole (2g/kg)and $T_{10} =$ Control (Untreated dry seed). Respective treatments were given at the time of germination test.

Germination test was conducted by using between paper (towel paper) methods. Hundred seeds with four replications were placed on

moist towel paper and rolled properly, tied with rubber band and kept in seed germinator at constant temperature 25°C with relative humidity 80 per cent. Final germination count was taken on 8th day (ISTA, 1993), which reported germination as percentage. Speed of germination was also counted as per Maguire (1962). Vigour index I and II was calculated as per standard procedure of Abdul-Baki and Anderson (1973). Fresh and dry seedling weight was also recorded. The different characters was data on subjected to statistical analysis of variance as per Completely Randomized Design (CRD) to find out the best treatment for various traits as per Panse and Sukhatme (1985).

RESULTS AND DISCUSSION

The seed priming is a technique which involves uptake of water by the seed followed by drying to initiate the early events of germination up to point of radical emergence. The benefits of seed priming includes rapid, uniform and increased germination, improved seedling vigour and growth under a broad range of environments resulting in better stand establishment and alleviation of phytochrome-induced dormancy in some crops. In the present investigation, the microbial and treatments fungicides seed were statistically superior to control for germination percentage, but none of the fungicidal treatments was superior microbial treatments for production of more vigorous seedlings. There was significant effect of presowing microbial and fungicides seed treatments on germination percentage treated (Table 2). Seeds with Rhizobium $leguminosarum(T_2)$ maximum germination recorded (98.45%) followed by Pseudomonas fluorescens(T_3) (98.42%). This may be due to increased synthesis of hormones like gibberellins, which would have

triggered the activity of specific enzvmes promoted that germination such as amylase, which have brought an increase in availability of starch assimilations. These results are in line with the previously reported findings by Gholamiet al. (2009) in maize, Anjorinet al. (2010)groundnut, Khalequzaman and Hossain (2008) in bush bean, Hosseinet al. (2011) in cowpea, Mohammad and Hossain (2003) and Suramwaret al. (2014) in mungbean. Increase in the germination percentage could be due to RNA and protein metabolism enhanced by priming (Khan et al. cockscomb (2003)in and Moeinzadehet al.(2010) in sunflower. germination percentage decreased with Tebuconazole (T9) and Control (T_{10}) .

There was also significant effect of different seed treatments on the first count of seed germination (Table 2). The maximum first count of seed germination was observed in $leguminosarum(T_2=$ Rhizobium 89.58%) followed by Pseudomonas fluorescens(T₃= 89.46%) as compared to Tebuconazole (T₉) and Control different $(T_{10}).$ Likewise, treatments affected significantly the speed of germination (Table 2). This indicated that microbial seed treatment had positive effect on speed germination process. The highest speed of germination (99.04) was observed in *Rhizobium* $leguminosarum(T_2)$, as was proved that germination ability was raised by plant growth bacteria such as Rhizobium. Similar findings reported were also earlier Gholami*et* al. (2009)in maize, Hosseinet *al.*(2011) in cowpea, Moeinzadeh*et* al. (2010)sunflowerandSuramwaret al. (2014) in mungbean. Maximum shoot and root length (5.04 cm and 14.69 cm) were achieved with Rhizobium

leguminosarum, which was the highest treatments. all the minimum shoot and root length (1.39 cm and 5.24 cm) were noticed with Tebuconazole (Table 2). maximum shoot and root length observed Rhizobium in leguminosarumseed treatment may be due to Rhizobium strain which resulted in to the maximum reduction of seed and root rot as reported Khalequzaman and Hossain (2008) in bush bean; Vijayalakshmiet al. (2011), Suramwaret al. (2014) in mungbean andBasetet al. (2012) in rice.

In the present study, the effect microbial seed treatment groundnut for shoot and root fresh weight was determined and presented Table 2. The application of Rhizobium leguminosarumseed treatment produced the highest fresh shoot (4078 mg) and fresh root (10595 mg) weight. These findings are akin with the finding reported earlier by Basetet al. (2012) in rice. There was significant impact of different seed treatments on shoot and root dry weight of groundnut seedling as shown in Table 2. The data showed that all the priming treatments increased the shoot dry weight as well as root dry weight as compared to Tebuconazole (T9) followed by control (T_{10}) . The highest shoot dry weight (3642 mg) was observed Rhizobium in leguminosarum, while the highest root dry weight (1455 mg) was observed with Rhizobium leguminosarumand hydropriming. Root dry weight was augmented by Rhizobium is logical in present study, because the application of plant growth promoting bacteria can result in larger root area and longer roots. These findings are in accordance with the results Mokhtaret al. (2011) in fababeanand Parkash and Aggarwal (2011) in Eucalyptus saligna. They also reported that it may be due to increased rate of phosphorus uptake and its inflow in roots. *Rhizobium leguminosarum*seed treatment maintained the highest shoot dry weight because of improved N₂-fixing and phosphate solublizing capacity of bacteria as well as ability of these microorganisms to produce growth promoting substances (Gholami*et al.*,2009) in maize.

The application of Rhizobium leguminosarumin the form of seed treatment resulted in increased seedling length and seedling dry weight (Table 2). The maximum seedling length (18.28)cm) seedling dry weight (3542 mg) was with reported Rhizobium $leguminosarum(T_2)$. The beneficial effect of Rhizobium inoculation on shoot dry weight was also reported by Hosseinet al. (2011) in cowpea, Basetet al.(2012) in rice, Parkash and Aggarwal (2011) in Eucalyptus saligna. Suramwaret al. (2014) in mungbean. Significantly the highest and the lowest vigour index length were observed with Rhizobium leguminosarum(1800.12) and control (500.40), respectively. Significantly the highest vigour index mass (34700) was recorded bv Rhizobium leguminosarum, which was at par with Pseudomonas fluorescens(33375), Hydropriming (32913),Trichodermaviride(32876) and Thirum (32868). The beneficial effect of Rhizobium strain seed treatment on vigour index length may be because of better synthesis of auxins, as also reported by Gholamiet al. (2009) in maize. Rhizobium leguminosarumseed treatment recorded the maximum vigour index while mass. Pseudomonas *fluorescens*seed treatment provided well establishment and adherence of bacteria to seed and enhanced seed factors such as vigour index length which in conformity with

results reported by Moeinzadeh*et al.* (2010) in sunflower; Hossein*et al.* (2011) in cowpea and Suramwar*et al.* (2014) in mungbean.

CONCLUSION

It can be concluded that seed priming is very effective tool for seed invigouration in groundnut. microbial seed treatments were superior to fungicidal treatments for most of the traits studied. The microbial seed treatment Rhizobium *leguminosarum*was found superior over all the treatments in respect of seed germination, seed vigour and other seed quality parameter.

REFERENCES

- Abdul-Baki, A. A., and Anderson, J. D. (1973). Vigour determination in soybean by multiple criteria. *Crop Sci.*, **13**: 630-637.
- Anjorin, T.; Samuel and Salako, A. E. (2010). Germinability and seedling vigour of some arable crops treated with Albitbioregulator and superhormai fungicide. *African J. Micro. Res.*, **4**(19): 1928-1934.
- Anonymous, (2010).District Wise Area, Production and Yield of Important Food and Non Food Crop in Gujarat State. Directorate of Agriculture, Government of Gujarat State, Gandhinagar.
- Ashraf, M. and Foolad, M. R. (2005). Pre-sowing seed treatment A shotgun approach to improve germination, plant growth and yield under saline conditions. *Adv. Agron.*, **88:** 223276.
- Baset, M. A.; Shamsuddin, Z. H. and Maziah, M. (2012). Effects of *rhizobia* and plant growth promoting bacteria inoculation on germination and seedling

- vigour of lowland rice. *African J. Biotech.*, **11**(16): 3758-3765.
- Chopra, V. L. (2001). Breeding Field Crops. Oxford & IBH Publishing Co., New Delhi. pp. 471-475.
- DOA (2013). Director of Agriculture, Government of Gujarat state, Gandhinagar.
- Gholami, A.;Shahsavani, S. and Nezarat, S.(2009). The effect of plant growth promoting *rhizobacteria*(PGPR) on germination, seedling growth and yield of maize. *International J. Bio. Life Sci.*, 5(1):35-40.
- Hossein, A. F.;Payam, M. and Kasra, M. (2011). Effect of thermopriming on germination of cowpea (*VignasinensisL.*). *Adv. Environ. Biol.*, **5**(2): 1668-1673.
- ISTA. (1993). International Rules for Seed Testing. Seed Sci. Technol., 21: 1288.
- Hossein, A. F.;Payam, M. and Kasra, M. (2011). Effect of thermopriming on germination of cowpea (*Vignasinensis* L.). *Adv. Environ. Biology*, **5**(2): 1668-1673.
- Khalequzaman, K. M. and Hossain, I. (2008). Effect of *rhizobium* strains and biofertilizers on root rot and yield of bush bean in *Sclerotiniasclerotiorum*infested soil. *J. Bio. Sci.*, **16:** 73-78.
- Khan, M.; Qasim, M.; Javed Iqbal, M.; Afzal Naeem and Abbas, M. Effect of (2003).seed humidification on germinability, vigor and leakage in cockscomb (Celosia argentea Var. CristataL.). International J. Agri. *Biol.*, **5**(4): 499-503.

- Knauft, D. A. and Wynne, J. C. (1995). Peanut breeding and genetics. *Adv. Agron.*, **55**: 393-445.
- Maguire, J.D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigour. *Crop Sci.*, **2:** 176-177.
- Moeinzadeh. Sharif-Zadeh. A.: F.:Ahmadzadeh. M. and Heidari, F. (2010).T. **Biopriming** of sunflower (Helianthus annuusL.) seed with Pseudomonas fluorescensfor improvement of seed invigoration and seedling growth. Australian J. Crop Sci.,4(7): 564-570.
- Mohammad, D. and Hossain (2003). Seed treatment with biofertilizer in controlling foot and root rot in mungbean. *Pak. J. Pl. Patho.*, **2**(2): 91-96.
- Panse, V. G. and Sukhatme, P. V. (1985). Statistical Methods for Agricultural Workers (Second Edition), Indian Council of Agricultural Research, New Delhi.

- Parkash, V. and Aggarwal, A. (2011). Interaction of VAM fungi with *Trichodermaviride* and *Rhizobium* species on establishment and growth of *Eucalyptus saligna*Sm. *E-Int. Scien. Res. J.*, **3**(3): 200-209.
- Suramwar, Supriya, P., Vaddoria, M.A., Mehta, D.R. and Patel, N.B. (2014). Influence of presowing microbial and fungicides seed treatments on seed quality in mungbean (*Vignaradiata* (L.) Wilzeck). AGRES-An International e-J. 3(1): 97-104.
- USDA (2013). National Nutrient Data Base, 2013.
- Vijayalakshmi, K. S.; Ayyathurai, V.; Vaikuntavasan P. and Rethinasamy, V. (2011). Burkholderiasp. strain TNAU-1 for biological control of root rot in mungbean(VignaradiataL.) caused by Macrophominaphaseolina. J. Pl.Prot. Res., 51(3):273-278.

Table 1: Effect of pre-sowing microbial and fungicidal seed treatments on subsequent Seed quality parameters in groundnut cv. GG-20

Treatment	Germination	First	Speed of	Shoot	Root	Shoot	Root			
	Percentage	Count	Germination	Length of	Length of	Fresh	Fresh			
			Percentage	Seedlings	Seedling	Weight	Weight			
Hydropriming (T ₁)	95.42	87.65	97.61	3.13	12.32	9900	3683			
Rhizobium leguminosarum(T ₂)	98.45	89.58	99.04	5.04	14.69	10595	4078			
Pseudomonas fluorescens(T ₃)	98.42	89.46	98.82	4.54	13.97	10044	3918			
$Trichodermaviride(T_4)$	95.28	87.35	96.98	4.22	13.60	9625	3767			
$Trichodermaharzianum(T_5)$	95.67	87.75	97.17	4.40	13.05	9550	3450			
Thirum(T ₆)	95.92	87.08	97.21	4.28	11.40	9858	3700			
Vitavax(T ₇)	95.37	86.25	96.05	3.91	11.43	9521	3421			
Carbendazim(T ₈)	95.35	88.18	97.61	4.10	11.34	9817	3358			
Tebuconazole(T ₉)	82.14	71.11	80.12	1.39	5.24	2608	2800			
Control (T ₁₀)	82.36	77.66	87.68	2.13	9.56	1933	2998			
S.Em.±	1.08	1.92	1.82	0.39	0.48	118.64	132.09			
C.D. at 5 %	3.21	5.72	5.40	1.15	1.43	352.52	392.49			
C.V. %	0.67	1.05	1.15	4.70	4.51	3.30	4.33			
Season					ı					
S.Em.±	0.59	1.05	0.99	0.21	0.26	64.98	72.35			
C.D. at 5 %	1.76	NS	NS	0.63	NS	NS	NS			
SxT										
S.Em.±	0.31	0.45	0.55	0.09	0.27	137.54	76.23			
C.D. at 5 %	0.88	1.26	1.54	0.25	0.74	387.07	214.52			

Contd.....

Table 1:Contd....

Treatment	Shoot	Root Dry	Seedling	Seedling	Vigour	Vigour					
	Dry	Weight	Length	Dry	Index	Index					
	Weight			Weight	Length	Mass					
Hydropriming (T ₁)	2917	1455	15.70	3450	1497.72	32913					
Rhizobium leguminosarum(T ₂)	3642	1432	18.28	3542	1800.12	34700					
Pseudomonas fluorescens(T ₃)	3500	1380	16.82	3392	1655.46	33375					
Trichodermaviride(T ₄)	3556	1358	15.25	3433	1453.58	32876					
Trichodermaharzianum(T ₅)	3183	1372	14.83	2525	1421.97	24159					
Thirum(T ₆)	3292	1337	14.98	3425	1437.48	32868					
Vitavax(T ₇)	2075	1339	14.92	2600	1425.67	24774					
Carbendazim(T ₈)	2475	1378	14.60	2580	1392.42	24597					
Tebuconazole(T ₉)	1592	370	13.49	2175	1105.42	17772					
Control (T ₁₀)	538	318	6.08	2348	500.40	19319					
S.Em.±	259.75	43.92	0.88	87.89	76.39	629.31					
C.D. at 5 %	771.77	130.49	2.62	261.15	226.98	1869.84					
C.V. %	4.40	3.87	4.13	5.92	4.08	5.56					
Season											
S.Em.±	142.27	24.05	0.48	48.14	41.84	344.68					
C.D. at 5 %	NS	71.47	1.44	NS	124.32	NS					
SxT											
S.Em.±	58.95	22.74	0.30	87.20	28.14	771.53					
C.D. at 5 %	165.90	63.99	0.85	245.40	79.20	2171.30					

[MS received: August 12,2014] [MS accepted: August 26, 2014]