CHARACTERIZATION OF GROUNDNUT GENOTYPES (Arachis hypogaea L.) THROUGH PLANT MORPHOLOGICAL CHARACTERS

*RAMANI, J. R.; BABARIYA, C. A.; PATEL, J. B.; UKANI J. D.; THUMAR, D. P. AND PIPALIYA, H. R.

DEPARTMENT OF SEED SCIENCE AND TECHNOLOGY COLLEGE OF AGRICULTURE, JUNAGADH AGRICULTURAL UNIVERSITY JUNAGADH - 362 001, GUJARAT, INDIA

*E-MAIL: jaydeepramani13@gmail.com

ABSTRACT

An experiment was carried out at the Sagdividi Farm, Department of Seed Science and Technology, College of Agriculture, Junagadh Agricultural University, Junagadh, to characterize twenty three groundnut genotypes based on the plant morphological characters. Based on the plant growth habit, all the 23 genotypes were erect types. On the basis of leaf colour, groundnut genotypes were grouped into dark green (7 genotypes), medium green (11 genotypes) and light green (5 genotypes). On the basis of leaflet size, genotypes were grouped into small leaflet size (9 genotypes), medium leaflet size (13 genotypes) and high leaflet size (1 genotype). On the basis of stem pubescence, genotypes were grouped into sparse (9 genotypes) and medium (14 genotypes). Based on the inflorescence, all the genotypes had simple inflorescence. Based on the time of maturity groundnut genotypes were grouped as very early (1 genotype), early (7 genotypes), medium (7 genotypes), late (6 genotypes) and very late (2 genotypes) time of maturity. The genotypes were grouped based on the flower presence on main axis into two groups viz., absent (11 genotypes) and present (12 genotypes). Based on the flowering pattern on main stem, genotypes were grouped into three viz., none (11 genotypes), alternate (6 genotypes) and sequential (6 genotypes). Based on flower arrangement on side branches, genotypes were grouped into alternate (20 genotypes) and sequential (3 genotypes) types.

KEY WORDS: Characterization, groundnut, plant morphology.

INTRODUCTION

Groundnut (Arachis hypogaea L.) is an important edible oil seed crops in the world and a member of Papilionaceae subfamily of Fabaceae family. India, China, Nigeria, Senegal, Sudan, Burma and the USA are the major groundnut of producing countries the Taxonomy of the germs Arachis has been well documented and includes 37 names and number of undescribed species. The genus has been divided into 9 section i.e., Arachis caulorrhizae. Erectoides, Etranervosae, Heteranthae, Procumbentes Rhizomatisae, Trierectoides and Triseminalae. The section Arachis

comprises an annual and perennial diploid (2n=20)and two annual tetraploid (2n=4x=40). The leaves of Arachis hypogaea L. are tetrafoliolate and plants are typically erect and peg penetrate in the soil at an anagle of approximately 45° . Most of the earlier classification of Arachis hypogaea L. (Khidir, 1997) was based on growth habit, presence or absence of seed dormancy and relative time to maturity. In latter classification, characters such as branching pattern and location of reproductive branch have been included. Groundnut is annually grown on about 24 million ha of land in about 120 countries under different agro-climatic

zones between 40°S and 40°N. In India, it is cultivated on an area of 4.19 million ha with production of 6.68 million tons and productivity of 1591 kg/ha during 2014-2015 (Anonymous, 2015a). Among the major groundnut growing states, Gujarat rank first in area (1.84 million ha) and production (4.92 million tons) with productivity of 2670 kg/ha (Anonymous, 2015b). The seven districts Amreli, Bhavnagar, Jamnagar, Junagadh, Kutch, Porbandar and Rajkot of Gujarat contribute more than 90% of production in Guiarat, where Junagadh district is the largest producer of groundnut in Gujarat (Anonymous, 2015c).

Maintenance of genetic purity of varieties is of primary importance for preventing varietal deterioration during successive regeneration cycles and for ensuring varietal performance at expected level. The aspects of Distinctness, Uniformity and Stability (DUS) are fundamental for characterization varieties. countries having In Breeder's Right (PBR) in operation, a new variety is registered only, if it is distinct from other varieties, uniform in its characteristics and genetically stable. The morphological study includes the study of seed to the whole plant characterization. Pod, seedlings and full grown plant could be taken into account for morphological characterization. Grow Out-Test conducted by growing the plants under field condition and growth features are observed in fixing genuineness. According to International Union for Protection of New Plant Varieties (UPOV), any new characteristics used varietal in characterization should be clearly defined. accepted and should have standard method of observation, least or not affected by environment. accessible to breeders, associated with reasonable costs efforts. To identify groundnut genotypes, international bodies like UPOV have published relevant descriptors. Such types of classical taxonomic approach is still being employed by certification agencies

for the purpose of grow out test to determine the genetic purity of seed lots. These morphological descriptors have a traditional significance and immediately accessible on the spot without need of equipment. Thus, a clear basis for distinctness testing procedure prior to varietal registration can draw out of this. However, the approach demands a field assessment, which depends on the degree of experience of the operator.

In the light of the above facts, the study on documentation characters for groundnut genotypes was planned with the objective to identify stable characteristics diagnostic morphology of groundnut genotypes.

MATERIALS AND METHODS

The experiment was conducted in the Sagdividi Farm, Department of Seed Science and Technology, College of Junagadh Agriculture, Agricultural University, Junagadh, during summer 2016 to study the varietal characterization in 23 groundnut genotypes viz., TPG-41, TG-37A, TLG-45, TG-26, TAG-24, GG-5, GJG-9, GG-2, SB-11, GJG-31, JSSP-HP8, TG-51,ALR-2, SG-99, GG-6, GG-4, J-86, J-88, J-89, ICGV-07222, ICGV-03043, ICGV-03042 and JB-1299, released for general cultivation in Gujarat at state level as well as at the National level in Central India based on the plant morphological characters. Plant morphological characters viz., plant growth habit, leaf colour, leaflet size (cm), stem pubescence, inflorescence, time of maturity, flower presence on main axis, flowering pattern on main stem and flower arrangement on side branches were studied as per the guidelines of DUS testing. Leaflet size and time of maturity were analyzed following Randomized Block Design as per the method suggested by Cochran and Cox (1957).

RESULTS AND DISCUSSION Plant growth character

Based on the variation in plant morphological characteristics, genotypes were grouped into different categories (Table 1 and 2). Based on the

plant growth habit, the genotypes did not differentiate. All the 23 genotypes were erect in plant growth habit. On the basis of leaf colour, groundnut genotypes were grouped into light green (5 genotypes), medium green (11 genotypes), and dark green (7 genotypes). On the basis of leaflet size, thirteen genotypes were grouped into high leaflet size (>6 cm), medium leaflet size (4-6 cm) nine in small leaflet size (<4 cm) and one genotype into high leaflet size (> 6 cm) the leaflet size ranged from 1.77 cm (JB-1299) to 6.70 cm (GG-5) with a mean of 4.21 cm. On the basis of stem pubescence, nine genotypes were grouped as sparse and fourteen genotypes were grouped as medium genotypes. Based on the inflorescence, the genotypes did not differentiate. All the 23 genotypes had simple inflorescence. The genotypes were grouped based on the time of maturity into very early (1 genotype), early genotypes), medium (7 genotypes), late (6 genotypes) and very late (2 genotypes).

morphological The plant characteristics helped in identifying and grouping of the genotypes. Based on the variation plant morphological in characteristics, the genotypes viz., TLG-45 and TG-26 were having similar plant morphology viz., erect plant growth habit, medium green leaf colour, medium leaflet size, medium in stem pubescence, simple inflorescence and early time of maturity.

The genotypes, TPG-41, TAG-24 and ALR were differing from the above genotypes (TLG-45 and TG-26) with respect to stem pubescence having sparse stem pubescence in TPG-41, while TAG-24 with respect to leaf colour having dark green colour.

The genotype, ALR-2 was with same as above two genotypes (TLG-45 and TG-26) but different in two characters with respect to sparse stem pubescence and very late time of maturity. The genotypes (GG-2 and SB-11) were having similar plant morphology like erect plant growth habit, light green leaf colour, medium leaflet size, medium stem pubescence, simple inflorescence and early time of maturity. The genotypes (GG-6 and GG-4) were having similar plant morphology like erect plant growth habit, light green leaf colour and medium leaflet size, medium stem pubescence, simple inflorescence and medium time maturity. The genotypes (J-89 and ICGVwere having similar 07222) morphology like erect plant growth habit, medium green leaf colour, small leaflet size, medium stem pubescence, simple inflorescence and late time of maturity. The genotype ICGV-03043 was differing from the above genotypes (J-89 and ICGV-07222) with respect to leaf colour having dark green leaf colour. genotypes, TG-37A and JSSP-HP8 having similar plant morphology like erect plant growth habit, dark green leaf colour, medium leaflet size, sparse pubescence, simple inflorescence and late time of maturity, while differ in time of maturity was medium in genotype JSSP-HP8. The genotype TG-51 was differing from the above genotype (TG-37A) with respect to medium green leaf colour and medium time of maturity, while the genotype GJG-9 with respect to light green leaf colour and small leaflet size, while the genotype SG-99 with respect to small leaflet size and very late time of maturity.

The GG-5 had erect plant growth habit, dark green leaf colour, high leaflet size, medium stem pubescence simple inflorescence and late time of maturity. The genotype ICGV-03042 was differing from the above genotype (GG-5) with respect to medium leaflet size. The GJG-31 had erect plant growth habit, medium green leaf colour, small leaflet size, sparse stem pubescence simple inflorescence and late time of maturity. The genotype JB-1299 was differing from the above genotype (GJG-31) with respect medium time of maturity. J-86 had erect plant growth habit, medium green leaf colour, small leaflet size, medium stem pubescence, simple inflorescence and medium time of maturity. The genotype J-

88 was differing from the above genotype (J-86) with respect to very late time of maturity.

Similar observation and grouping of genotypes based on the plant morphological characters were made by Upadhyaya et al. (2001), Upadhyaya (2003) and Mallikarjuna et al. (2006) in groundnut.

Flower morphological characters

Based on the variation in flower morphological characteristics. the genotypes were grouped into different categories (Table 2). Flower on main axis was absent in 11 genotypes and flower on main axis was present in 12 genotypes. On the basis of flowering pattern of main genotypes groundnut stem, differentiated into none (11 genotypes), alternate (6 genotypes) and sequential (6 genotypes). On the basis of flower side arrangement on branches genotypes had alternate and (3 genotypes) had sequential flower arrangement on side branches.

On the basis of flower characteristics. morphological the genotypes were categorized into different groups (Table 2) and varietal identification keys were prepared (Figure 5.2). The genotype TPG-41 and TG-26 were having similar flower morphology viz., absent of flower on main axis, sequential flowering pattern on main stem and alternate flower arrangement on side branches. genotype TG-37A and SB-11 were having similar flower morphology like were absent of flower on main axis, sequential flowering pattern on main stem and sequential flower arrangement on side branches. The genotype TLG-45, TG-51, ALR-2 and GG-6 were having similar flower morphology like flower present on main axis, no flowering pattern on main stem and alternate flower arrangement on side branches, while GG-2 was differing from the above genotypes (TLG-45, TG-51, ALR-2 and GG-6) with respect to sequential flower arrangement on side branches. GG-5 was differing from the above genotypes (TLG-45, TG-51, ALR-2 and GG-6) with respect to flowering pattern on main stem was sequential and alternate flower arrangement on side branches. GJG-9, GG-4, JB-1299, JSSP-HP8 and SG-99 were having similar flower morphology viz., flower absent on main axis, no flowering pattern on main stem and alternate flower arrangement on side branches. GJG-31, J-88, ICGV-07222 and ICGV-03042 genotypes having similar flower morphology flower present on main axis, alternate flowering pattern on main stem and alternate flower arrangement on side branches. J-89 and ICGV-03043 genotypes were having similar like flower morphology flower absent on main axis, alternate flowering pattern on main stem and alternate flower arrangement on side branches. Similar observations were also made by John and Reddy (2015) in groundnut.

CONCLUSION

Based on the plant growth habit, all the 23 genotypes were erect types. On the basis of leaf colour, groundnut genotypes were grouped into dark green (7 genotypes), medium green (11 genotypes) and light green (5 genotypes). On the basis of leaflet size, genotypes were grouped into small leaflet size (9 genotypes), medium leaflet size (13 genotypes) and high leaflet size (1 genotype). On the basis of stem pubescence, genotypes were grouped into sparse (9 genotypes) and medium (14 genotypes). Based on the inflorescence, all the genotypes had simple inflorescence. Based on the time of groundnut genotypes grouped as very early (1 genotype), early (7 genotypes), medium (7 genotypes), late (6 genotypes) and very late (2 genotypes) time of maturity. The genotypes were grouped based on the flower presence on main axis into two groups viz., absent (11 genotypes) and present (12 genotypes). Based on the flowering pattern on main stem, genotypes were grouped into three viz., none (11 genotypes), alternate (6 genotypes) and sequential (6 genotypes).

Based on flower arrangement on side branches, genotypes were grouped into alternate (20 genotypes) and sequential (3 genotypes) types.

REFERENCES

- Anonymous (2015a). Pocket Book of Agricultural Statistics. Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India. pp: 481
- Anonymous (2015b). Annual Report (*Kharif*, 2014) of AICRP on Groundnut, Directorate of Groundnut research. Ivnagar. Junagadh. pp: 3
- Anonymous (2015c). District wise Area, Production & Yield of Important food & Non-Food crops in Guirat State. Directorate of Agriculture krishibhavan, Gujarat state, Gandhinagar.
- Cochran, W. G. and Cox, G. M. (1957). Experimental Design, 2ndEdn. John Wiley and Sons Inc., New York.
- John, K. and Reddy, P. R. (2015). Character association and path analysis studies for pod yield and its components in early segregating population of groundnut (Arachis

- hypogaea L.) Int. J. Curr. Res. Biosci. Plantbiol., 2(7): 149-157
- Khidir, M. O. (1997). Oil Crops in the Sudan (in Arabic). Khartoum Univ. Press, Khartoum.
- Mallikarjuna, B. P.; Swamy, H. D.; Upadhyaya, P. V. and Kenchana, G. (2006). Characterization of Asian core-collection of groundnut for morphological traits. Indian J. Crop Sci., 1(1-2): 129-134.
- Upadhyaya, H. D.; Ortiz, R.; Bramel, P. J. Subesingh, and (2001).Development of groundnut core collection from Asia region. In 100 years of post-mendelian genetics and plant breeding - Retrospect and prospects. Diamond Jubilee Symposium, 6-9 November 2001. Indian. Soci. J. Genet. Pl. Breed, New Delhi, India.
- Upadhyaya, H. D. (2003). Phenotypic diversity in groundnut (Arachis hypogaea L.) core collection assessed by morphological and agronomical evaluations. Genet. Resour, Crop. Evol., 50: 539-550

Table 1: Identification and grouping of groundnut genotypes based on plant growth habit, leaf colour, leaflet size and stem pubescence

Genotypes	Plant	Leaf colour	Leaflet size	Group	Stem
	growth		(cm)		pubescence
	habit				
TPG-41	Erect	Medium green	4.77	Medium	Sparse
TG-37A	Erect	Dark green	5.03	Medium	Sparse
TLG-45	Erect	Medium green	4.67	Medium	Medium
TG-26	Erect	Medium green	5.00	Medium	Medium
TAG-24	Erect	Dark green	5.03	Medium	Medium
GG-5	Erect	Dark green	6.70	High	Medium
GJG-9	Erect	Light green	2.90	Small	Sparse
GG-2	Erect	Light green	5.37	Medium	Medium
SB-11	Erect	Light green	5.20	Medium	Medium
GJG-31	Erect	Medium green	2.67	Small	Sparse
JSSP-HP8	Erect	Dark green	5.60	Medium	Sparse
TG-51	Erect	Medium green	5.60	Medium	Sparse
ALR-2	Erect	Medium green	5.00	Medium	Sparse
SG-99	Erect	Dark green	2.90	Small	Sparse
GG-6	Erect	Light green	5.00	Medium	Medium
GG-4	Erect	Light green	5.06	Medium	Medium
J-86	Erect	Medium green	2.90	Small	Medium
J-88	Erect	Medium green	2.87	Small	Medium
J-89	Erect	Medium green	2.43	Small	Medium
ICGV07222	Erect	Medium green	2.87	Small	Medium
ICGV-03043	Erect	Dark green	3.10	Small	Medium
ICGV-03042	Erect	Dark green	4.43	Medium	Medium
JB-1299	Erect	Medium green	1.77	Small	Sparse
Mean			4.21		
S.Em ±			0.18		
C.D. at 5 %			0.51		
CV %			7.38		

Note: Leaflet Size (cm)

 Small
 : < 4 cm</td>

 Medium
 : < 4-6 cm</td>

 High
 : > 6 cm

Table 2: Identification and grouping of groundnut genotypes based on inflorescence, time of maturity, flower presence on main axis, flowering pattern on main stem and flower arrangement on side branches

Genotypes	Inflorescence	Time of	Group	Flower	Flowering	Flower
		maturity	•	presence on	pattern on	arrangemen
		·		main axis	main stem	t on side
						branches
TPG-41	Simple	99.00	Early	Absent	Sequential	Alternate
TG-37A	Simple	92.33	Early	Absent	Sequential	Sequential
TLG-45	Simple	99.00	Early	Present	None	Alternate
TG-26	Simple	100.00	Early	Absent	Sequential	Alternate
TAG-24	Simple	93.67	Early	Present	Sequential	Alternate
GG-5	Simple	116.00	Late	Present	Sequential	Alternate
GJG-9	Simple	107.33	Medium	Absent	None	Alternate
GG-2	Simple	92.33	Early	Present	None	Sequential
SB-11	Simple	99.67	Early	Absent	Sequential	Sequential
GJG-31	Simple	117.67	Late	Present	Alternate	Alternate
JSSP-HP8	Simple	107.67	Medium	Absent	None	Alternate
TG-51	Simple	109.67	Medium	Present	None	Alternate
ALR-2	Simple	124.33	Very late	Present	None	Alternate
SG-99	Simple	126.33	Very late	Absent	None	Alternate
GG-6	Simple	108.33	Medium	Present	None	Alternate
GG-4	Simple	105.00	Medium	Absent	None	Alternate
J-86	Simple	108.67	Medium	Present	None	Alternate
J-88	Simple	87.33	Very	Present	Alternate	Alternate
J-89	Simple	110.00	Late	Absent	Alternate	Alternate
ICGV-07222	Simple	116.00	Late	Present	Alternate	Alternate
ICGV-03043	Simple	118.00	Late	Absent	Alternate	Alternate
ICGV-03042	Simple	116.33	Late	Present	Alternate	Alternate
JB-1299	Simple	105.00	Medium	Absent	None	Alternate
Mean		106.94				
S.Em ±		0.82				
C.D. at 5 %		2.33				
CV %		1.33				

Note: Time of maturity (days)

Very early : <90 days Early : 90 to 100 days Medium : 101-110 days Late : 111-120 days

Very late : > 120 days

STEM PUBESCENCE PLANT GROWTH HABIT **ERECT: TAG-24 MEDIUM: TG-51 SPARSE: TG-37A LEAF COLOUR DARK GREEN: GG-5 MEDIUM GREEN: J-88 LIGHT GREEN: GG-2 LEAFLET SIZE SMALL: GJG-9 MEDIUM: GG-2** HIGH: GG-5

Plate 1: Plant growth habit, stem pubescence, leaf colour and leaflet size in groundnut genotypes

www.arkgroup.co.in Page 374

INFLORESCENCE

SIMPLE: GG-2

FLOWER PRESENCE ON MAIN AXIS

PRESENT: TG-51

ABSENT: JSSP-HP8

FLOWERING PATTERN ON MAIN STEM

NONE: J-86

ALTERNATE: GJG-31

SEQUENTIAL: SB-11

FLOWER ARRANGEMENT ON SIDE BRANCHES

SEQUENTIAL: GG-2

Plate 2: Inflorescence, flower presence on main axis, flowering pattern on main stem and flower arrangement on side branches in groundnut genotypes

[MS received : June 18, 2017] [MS accepted : June 22, 2017]

www.arkgroup.co.in Page 375