EFFECT OF ORGANIC SEED TREATMENT ON STORABILITY OF WHEAT

*PATEL, J. B.; BABARIYA, C. A.; SONDARVA, JYOTI AND BHATIYA, V. J.

DEPARTMENT OF SEED SCIENCE AND TECHNOLOGY COLLEGE OF AGRICULTURE JUNAGADH AGICULTURAL UNIVERSITY JUNAGADH – 362 001, GUJARAT, INDIIA

*EMAIL: jbpatelvasai38@gmail.com

ABSTRACT

An experiment was carried out to know the effect of seed treatment with plant products and deltamethrin on storability of wheat seeds at the Department of seed Science and Technology, College of Agriculture, Junaagdh Agricultural University, Junagadh. The results revealed that the botanicals were significantly superior and maintaining higher seed viability and vigour up to 20 months of storage when compared to untreated control and deltamethrin. Among all the botanicals, significantly the highest germination (94.67%) was recorded in the treatment T_7 (Neem Leaf Powder @ 5g/kg of seed) after 20 months of storage and it was at par with treatment T_6 (Neem Leaf Powder @ 5g/kg of seed). In addition to that T_3 (Sweet Flag Rhizome Powder @ 2g/kg seed), T_2 (Sweet Flag Rhizome Powder @ 5g/kg seed) and T_5 (Neem Seed Kernel Powder @ 2g/kg of seed) recorded a germination percentage of 86.00, 85.67 and 85.67 per cent (Above ISTA standard, > 85% in wheat), respectively, after 20 months of storage. These treatments also had higher seed vigour index (length and mass) after 20 months of storage.

KEY WORDS: Botanicals, seed treatment, storability, wheat

INTRODUCTION

In India, wheat is the second most important cereal crop next to rice and a key crop of the green revolution and post green revolution era. India stands second among wheat producing countries with respect to area and production. Wheat attained its premier position by virtue of its unique protein gluten, which is responsible for bread making properties of wheat flour.

In storage, viability and vigour of the seeds is regulated by many physico-chemical factors like moisture content of seed, atmospheric relative humidity, temperature, initial seed quality, physical and chemical composition of seed, gaseous exchange, storage structure, packaging materials (Doijode, 1988). Storage of seed till next sowing season is essential part of seed industry. In general, cereals are more susceptible to storage pests and wheat is

no exception. Because of its high protein content wheat, seed is attacked by storage pest and other microflora. The rice weevil (Sitophilus oryzae), causes considerable damage to the seed during storage and deteriorate the quality of seed. Apart from this, fungi associated with stored seeds are chiefly responsible for deterioration of seed quality. In order to prevent the quantitative and qualitative losses due to pests and diseases, methods such as storage in safe conditions and containers with safe moisture levels and seed treatment with suitable chemicals or plant products etc. are being adopted.

An era of synthetic chemicals came with the several insecticides and fungicides, which successfully manage the infestation caused by insects, fungi and other microflora. But, the descriptive use of chemicals and their residual toxicity

ISSN: 2277-9663

adversely affects the non target animals including human beings besides affecting the seed quality. Hence, the safe and feasible approach is the treatment of seeds with botanicals which are safe, ecofriendly, economical and easily available. It will be of immense use to the farming community and seed industry that how the higher seed yield and quality seeds can be produced by using organics and how best seeds can be stored by treating the seeds with botanicals under ambient condition with minimum qualitative and quantitative losses. Information on these aspects in wheat is meagre. Rhizomes of sweet flag Acorus calamus L. (Acoracae), possesses insecticidal properties against a wide variety of insect pests. The powder and extracted of rhizomes oil stomach/contact poison, anti-feedant and repellent. The toxic and sterilizing effects of vapours of rhizome oil against certain insect pests have also been observed (Schmidt et al., 1991). The insecticidal property of sweet flag was reviewed by Balakumbahan et al. (2010). Hence, in the present investigation, sweet flag rhizome powder was evaluated as seed treatment along with other natural organic product like neem seed kernel powder, neem leaf powder and neem oil along deltamethrin for safe storage of wheat seeds.

MATERIALS AND METHODS

present investigation was carried out in Laboratory of the Department of Seed Science and Technology, College of Agriculture, Junagadh Agricultural University, Junagadh from the May 2014 to April, 2016. wherein two kg of freshly harvested quality seed of wheat cv. Gujarat Wheat 366 (GW 366) having high germination percentage and low moisture content (below 8%) was taken for each repetition and treated as per following treatments viz., $T_1 = Control$ (Untreated), $T_2 = Sweet$ Flag Rhizome Powder @ 2g/kg of seed, T₃ = Sweet Flag Rhizome Powder @ 5g/kg of seed, T_4 = Neem Seed Kernel Powder @

2g/kg Seed, T_5 = Neem Seed Kernel Powder @ 5g/kg Seed, T_6 = Neem leaf powder @ 2g / kg seed, T_7 = Neem leaf powder @ 5g / kg seed, T_8 = Neem Oil @ 2ml/kg seed, T_9 = Neem Oil @ 5ml/kgseed, and T_{10} = Deltamethrin 2.8 EC @ 0.5 ml/kg of seed. The experiment was carried out using Completely Randomized Design (CRD) repeated three times. After proper mixing or smearing, seeds were packed and kept in laboratory under ambient condition. Observations were recorded at bimonthly interval on germination (%), root length (cm), shoot length (cm), seedling dry weight (g), seed vigour index I, seed vigour index II and seed moisture content (%). The infestation/ damage in the seed (%) and number of insect/pest (live or dead) were also measured. Germination test was carried out using paper towel technique as per the procedure given by ISTA (1999). Germinated seedlings were selected from replication of the treatment for calculating the seedling vigor index. The seedling vigor index (length and mass) was calculated by using the following formula (Abdul-Baki and Anderson, 1973). The shoot and root length of each of the 10 seedlings were measured in centimeters. Seedling dry weight was measured of all the germinated seedlings after oven drying. The data were statistically analyzed as per the method of Cochran and Cox (1957) for Completely Randomized Design (CRD).

RESULTS AND DISCUSSION

Germination (%)

The results presented in Table 1 indicated treatments exhibited that significant differences for germination per cent after 20 months of storage. Among all the treatments, significantly the highest germination (94.67%) was recorded in the treatment T₇ (Neem Leaf Powder @ 5g/kg of seed) after 20 months of storage and it was at par with treatment T₆ (Neem Leaf Powder @ 5g/kg of seed). In addition to that T₃ (Sweet Flag Rhizome Powder @ 2g/kg seed), T₂ (Sweet Flag Rhizome ISSN: 2277-9663

Powder @ 2g/kg seed) and T₅ (Neem Seed Kernel Powder @ 2g/kg of seed) recorded a germination percentage of 86.00, 85.67 and 85.67 per cent (Above ISTA standard, 85 % wheat), respectively. in Significantly lowest germination the (46.67%) was recorded in the treatment T_9 (Neem Oil @ 5.0 ml/kg of seed) after 20 months of storage.

Root length (cm)

The results presented in Table 2 indicated exhibited that treatments significant differences for root length after 20 months of storage. Among all the treatments, highest root length (6.09 cm) was recorded in the treatment T2 (Sweet Flag Rhizome Powder @ 2g/kg seed), while lowest root length (4.73 cm) was recorded in T₅ (Neem Seed Kernel Powder @ 5g/kg of seed) after 20 months of storage.

Shoot length (cm)

The results presented in Table 3 treatments indicated that exhibited significant differences for shoot length after 20 months of storage. Among all the treatments, significantly the highest shoot length (4.53 cm) was recorded in the treatment T₉ (Neem Oil @ 5.0 ml/kg of seed), while significantly the lowest shoot length (3.69 cm) was recorded in the treatment T₇ (Neem Leaf Powder @ 5g/kg of seed) after 20 months of storage.

Seedling dry weight (g)

The results presented in Table 4 indicated that treatments exhibited significant differences for seedling dry weight after 20 months of storage. Among all the treatments, significantly the highest seedling dry weight (4.36 g) was recorded in the treatment T₇ (Neem Leaf Powder @ 5g/kg of seed). Significantly the lowest seedling dry weight (2.33 g) was recorded in the treatment T₉ (Neem Oil @ 5.0 ml/kg of seed) after 20 months of storage.

Seed Vigour Index I

The results presented in Table 5 indicated that treatments exhibited significant differences for seed vigour index I after 20 months of storage. Among

all the treatments, significantly the highest seed vigour index I (898.86) was recorded in the treatment T₂ (Sweet Flag Rhizome Powder @ 2g/kg seed) after 20 months of storage and it was at par with treatment T₃ (Sweet Flag Rhizome Powder @ 2g/kg seed), T₇ (Neem Leaf Powder @ 5g/kg of seed), T₄ (Neem Seed Kernel Powder @ 2g/kg of seed) and T₆ (Neem Leaf Powder @ 5g/kg of seed) with a seed Vigour Index I of 892.22, 845.59, 845.26 and 844.82, respectively. Significantly the lowest seed vigour index I (478.99) was recorded in the treatment T₉ (Neem Oil @ 5.0 ml/kg of seed) after 20 months of storage.

Seed Vigour Index II

The results presented in Table 6 treatments exhibited indicated that significant differences for seed vigour index II after 20 months of storage. Among all the treatments, significantly the highest seed vigour index II (413.19) was recorded in the treatment T₇ (Neem Leaf Powder @ 5g/kg of seed) after 20 months of storage and it was at par with treatment T₆ (Neem Leaf Powder @ 5g/kg of seed) with a seed vigour index II of 399.32. Treatments T₂ (Sweet Flag Rhizome Powder @ 2g/kg seed), T₃ (Sweet Flag Rhizome Powder @ 2g/kg seed), T₄ (Neem Leaf Powder @ 2g/kg of seed) and T₅ (Neem Seed Kernel Powder @ 5g/kg seed) recorded a seed Vigour Index II of more than 300. 00 were also the best treatments. Significantly the lowest seed vigour index II (109.24) was recorded in the treatment T₉ (Neem Oil @ 5.0 ml/kg of seed) after 20 months of storage.

Seed moisture (%)

The results presented in Table 7 indicated that treatments exhibited nonsignificant differences for seed moisture content after 20 months of storage. Among all the treatments, highest seed moisture content (9.03 %) was recorded in the treatment T₂ (Sweet Flag Rhizome Powder @ 2g/kg of seed), while the lowest seed moisture content (8.01%) was recorded in the treatment T₈ (Neem Oil @ 2.0 ml/kg of seed) after 20 months of storage.

ISSN: 2277-9663

Seed Damage and Number of Insect pest (Live or Dead)

There is no infestation in the seed and no insect pest population as well as seed damage was observed in stored sample during the storage.

The better seed quality parameters observed with botanicals seed treatments may be because of no insect infestation noticed with these treatments. The insects not only eat the storage food in the seed, but also eat the germ, leading to death of the seed and hence, result in poor seed germination and lower vigour (Deshpande et al., 2004). The other botanicals viz., neem leaf powder, neem seed kernel powder and sweet flag rhizome powder also recorded higher root and shhot length, seedling dry weight as well as seed vigour index (length and mass) over untreated control. These botanicals because of their insecticidal property, prevents the seeds from insect attack and thus, leads to better seed quality parameters (Merwade, 2000; Channabasanagowda et al., 2008; Hamane et al., 2015). Similar beneficial effect of botonicals in controlling insect attack during storage has been observed in cowpea (Maraddi, 2002) and pea seeds (Umrao and Verma, 2002). Abdul-Rafiu (2006) found that there is no any infestation of storage pest in neem based treatments. Mandali and Reddy (2014) reported that neem formulations were safer seed protectants for long term storage of redgram against Callosobruchus chinensis.

The superiority of botanicals might be due to the fact that, these treatments keep the seeds intact as it acts as binding material and covers the minor cracks and aberrations on the seed coat at initial stage thus, blocking the fungal invasion. Apart from this, the insecticidal property present in the botanicals also helps in making the seeds incompatible for insects during storage (Maraddi, 2002). Similar beneficial effect of sweet flag rhizome powder in protecting seeds from attack of Rhizoperta dominica (lesser grain bore) Sitophilus oryzae (rice and weevil)

throughout the storage period next to seed treatment with deltamethrin was observed in wheat by Biradar (2000).

Use of botanicals as seed treatment is advisable because of their safety to human health. The botanicals also have same insecticidal property as that of chemicals and can maintain the viability and vigour of seed for long period. The main advantage of treating seeds with botanicals over chemicals is that, the seeds treated with botanicals if left can be reused for consumption purpose after washing with water, whereas, it could not be possible in seeds treated with chemicals which has residual toxic effect on the human beings and animals (Channabasanagowda et al., 2008).

CONCLUSION

From the results and discussion, it can be concluded that wheat seed may be stored under ambient storage condition packed with cloth bag with seed treatment of Neem Leaf Powder @ 2-5g/kg of seed or Sweet Flag Rhizome Powder @ 2-5g/kg of seed or Neem Seed Kernel Powder @ 2 g/kg seed for a period of 20 months without deterioration in germination and seedling vigour.

REFERENCES

- Abdul-Baki, A.A. and Anderson, J. D. (1973). Vigor determination in soybean seeds by multiple criteria. Crop Sci., 13: 630-633.
- Abdul-Rafiu, A. M. (2006). Effect of selected botanicals on maize storage weevils during storage under ambient conditions. M.Sc. Thesis (Unpublished). University of Agric. Abeokuta. pp. 90.
- Balakumbahan, R.; Rajamani, K. and (2010). Acorus Kumanan, K. overview. calamus: An J. Medicinal Pl. Res., 4(25). 2740-2745.
- Biradar, B. S. (2000). Prevention of cross infestation by Sitophilus oryzae Linn and Rhyzopertha dominica Fab. in stored wheat. M.Sc. (Agri.)

- _____
 - Thesis (Unpublished) Submitted to University of Agricultural Sciences, Dharwad (India).
- Channabasanagowda, N. K.; Patil, B.; Ninganur, B. T.; Patil, B. N.; Hunje, R. and Awaknavar, J. S. (2008). Effect of botanical seed treatment on storability of wheat. *Karnataka J. Agric. Sci.*, **21**(3): 361-365.
- Cochran, V. G. and Cox, G. M. (1957). Experimental Designs. New York, John Wiley and Hall Ltd., London, pp. 293. 296.
- Deshpande, V. K.; Sibi, V. G. and Vyakaranahal, B. S. (2004). Effect of botanical seed treatments against *Callosobruchus chinensisi* (Linn.) on viability and vigour of blackgram seeds during storage. *Seed Res.*, **32**: 193-196.
- Doijode, S. D. (1988). Effect of storage environment on brinjal (*Sorghum melongena*) seed viability. *Progressive Horti.*, **20**: 292-293.
- Hamane, G. M.; Bharad, Swati G.; Potdukhe, N. R. and Kamdi, T. S. (2015). Effect of botanical seed treatments on storability of wheat. *Trends Biosci.*, **8**(17): 4544-4547.
- ISTA (1999). International rules for seed testing. *Seed Sci. Tahnol.*, *Supplement Rules*, **27**: 20-25.

- Mandali, R. and Reddy, K. D. (2014). Neem formulations – safer seed protectants for long term storage of red gram against Callosobruchu schinensis. *J. Biopest*, **7**(Supp.): 128-132.
- Maraddi, B. M. (2002), Influence of growth retardants on seed yield and quality and seed treatments on storability of cowpea CO-152.

 M.Sc. (Agri.) Thesis (Unpublished)
 Submitted to University of Agricultural Sciences, Dharwad (India).
- Merwade, M. N. (2000). Investigation on seed production techniques and storability of chickpea. M.Sc. (Agri.) Thesis (Unpublished) Submitted to University of Agricultural Sciences, Dharwad (India).
- Schmidt, G. H.; Risha, E. M. and El-Nahal, A. K. M. (1991). Reduction of progeny of some stored product coleopteran by vapours of Acorus calamus oil. *J. Stored Prod. Res.*, **27**(2): 121-127.
- Umrao, R. S. and Verma, R. A. (2002). Effectiveness of some plant products against pulse beetle on pea. *Indian J. Ent.*, **64**: 451-453.

Table 1: Effects of various organic seed treatments on germination (%)

Treatment /Period	2 Month	4 Month	6 Month	8 Month	10 Month	12 Month	14 Month	16 Month	18 Month	20 Month	22 Month	24 Month
T_1	99.33	96.67	92.67	90.00	98.00	83.00	73.00	65.67	60.00	61.00	55.67	59.67
T_2	99.00	98.00	91.00	80.33	98.00	98.00	91.33	94.00	95.00	85.67	81.00	82.33
T_3	97.67	97.67	91.00	83.67	96.67	98.00	95.67	91.33	93.00	86.00	80.00	78.67
T_4	98.33	98.00	97.67	93.33	93.33	86.67	96.67	74.67	95.33	85.67	82.67	72.33
T ₅	87.00	98.00	96.00	92.00	94.33	96.67	96.67	84.33	84.00	83.00	78.67	73.33
T_6	97.33	90.00	93.67	90.33	97.33	98.00	92.67	82.00	92.00	94.00	86.34	78.67
T ₇	95.00	92.67	87.67	93.66	95.33	90.67	92.00	92.67	94.00	94.67	87.00	79.33
T ₈	92.67	95.33	89.67	89.00	94.33	82.67	71.33	66.33	63.33	62.67	48.00	36.67
T_9	97.00	92.33	84.67	66.00	86.33	81.00	64.00	63.67	55.00	46.67	46.67	35.33
T_{10}	97.67	96.00	93.33	94.67	98.00	96.67	91.33	78.67	84.33	81.00	78.33	74.67
Mean	96.10	95.47	91.74	87.30	95.17	91.14	86.47	79.33	81.60	78.03	72.44	82.9
S. Em. <u>+</u>	1.37	0.83	0.84	2.55	1.27	1.58	1.97	2.18	3.49	1.86	1.96	4.11
C.D. at 5%	4.06	2.47	2.51	7.57	3.77	4.69	5.85	6.48	10.38	5.52	5.81	12.21
CV %	2.46	1.51	1.59	5.06	2.31	3.00	3.95	4.76	7.41	4.13	4.68	10.60

Table 2: Effects of various organic seed treatments on root length

Treatment	2	4	6	8	10	12	14	16	18	20	22	24
/Period	Month											
T_1	13.15	12.78	13.34	9.89	14.11	6.01	6.03	6.69	6.36	5.57	3.81	3.29
T_2	12.25	12.16	13.15	7.83	15.89	6.21	6.03	6.66	6.39	6.09	3.17	3.22
T_3	13.11	12.73	12.98	11.15	14.56	7.21	6.24	7.07	6.97	6.06	3.05	3.14
T_4	12.87	12.61	13.09	10.99	13.46	5.71	5.96	6.41	6.34	5.79	4.04	3.66
T_5	12.42	11.9	12.23	12.09	14.75	6.41	5.96	6.84	6.60	4.73	3.07	3.59
T_6	13.06	13.07	13.59	12.49	14.78	6.68	6.78	6.76	6.54	5.17	3.31	3.01
T_7	12.85	12.89	12.71	12.48	14.96	6.37	6.27	6.28	6.39	5.23	3.94	3.24
T_8	13.61	13.17	13.58	11.58	14.89	6.52	5.64	6.14	6.37	5.44	4.30	3.40
T ₉	12.86	12.3	12.72	12.11	14.86	5.68	5.84	6.26	6.44	5.72	4.47	3.20
T_{10}	13.6	12.83	13.12	12.62	15.11	6.1	6.38	6.59	6.71	5.71	3.63	3.53
Mean	12.98	12.64	13.05	11.32	14.74	6.29	6.11	6.57	6.51	5.55	3.67	3.33
S. Em. <u>+</u>	0.31	0.32	0.31	0.34	0.19	0.13	0.19	0.14	0.24	0.13	0.23	0.34
C.D. at 5%	NS	NS	NS	1	0.56	0.39	0.58	0.42	NS	0.39	0.69	NS
CV %	4.17	4.42	4.15	5.16	2.2	3.63	5.5	3.77	6.36	4.07	10.94	15.05

www.arkgroup.co.in

Table 3: Effects of various organic seed treatments on shoot length

Treatment	2	4	6	8	10	12	14	16	18	20	22	24
/Period	Month											
T_1	6.43	6.16	6.58	5.10	6.61	4.76	4.34	4.51	4.76	4.30	3.22	3.06
T_2	6.71	5.61	5.81	4.40	6.81	6.30	4.81	4.40	4.71	4.41	2.81	2.64
T_3	6.46	5.98	6.16	4.45	6.09	6.27	4.70	4.01	4.58	4.31	3.26	2.66
T_4	5.93	5.33	5.96	4.43	6.90	5.97	4.32	0.04	5.22	4.08	2.90	2.48
T_5	6.17	4.96	5.11	4.45	7.25	5.61	5.16	4.28	5.00	4.35	2.85	2.87
T_6	7.62	6.25	6.49	4.70	7.08	5.49	5.22	3.80	4.21	3.82	3.04	2.97
T_7	6.86	5.81	5.77	5.15	7.07	6.05	4.64	3.62	4.21	3.69	3.30	3.39
T_8	7.15	6.10	6.45	4.47	7.44	6.29	3.79	3.61	4.42	4.17	3.99	3.96
T_9	7.77	6.28	6.52	4.81	6.80	5.82	4.17	3.48	5.45	4.53	3.34	2.35
T_{10}	7.19	6.12	6.51	4.30	7.46	6.50	3.17	4.43	4.72	4.47	3.01	2.32
Mean	6.83	5.86	6.14	4.63	6.95	5.91	4.43	3.62	4.73	4.21	3.17	2.87
S. Em. <u>+</u>	0.19	0.22	0.12	0.03	0.08	0.13	0.22	0.28	0.33	0.17	0.17	0.18
C.D. at 5%	0.57	0.65	0.37	0.10	0.24	0.37	0.65	NS	NS	0.51	0.52	0.55
CV %	4.85	6.49	3.49	1.31	2.02	3.69	8.68	12.04	12.23	7.09	9.59	8.70

Table 4: Effects of various organic seed treatments on seedling dry weight

Treatment	2	4	6	8	10	12	14	16	18	20	22	24
/Period	Month											
T_1	4.03	4.48	3.63	3.73	3.50	3.26	4.15	3.81	4.29	4.22	2.48	2.23
T_2	3.82	4.68	4.09	3.30	3.64	4.30	3.97	4.47	4.56	3.66	3.05	2.22
T ₃	3.96	4.51	3.67	3.37	4.15	4.29	4.51	3.89	4.31	2.80	3.20	2.24
T_4	4.17	4.23	3.70	3.82	3.66	3.74	4.15	3.57	4.13	3.76	3.14	2.18
T ₅	3.93	4.31	3.83	3.28	3.75	4.50	3.87	3.73	4.03	3.81	3.03	2.23
T_6	3.77	4.17	3.37	3.69	3.72	4.38	4.05	4.13	4.09	4.25	3.07	2.23
T ₇	3.92	4.43	3.97	3.65	3.77	3.87	4.33	4.94	4.51	4.36	2.80	2.23
T ₈	4.05	4.49	3.51	3.56	3.83	4.59	4.10	4.23	3.42	3.25	2.28	2.23
T ₉	4.10	3.91	3.29	2.99	3.48	3.69	3.61	4.97	2.55	2.33	2.47	2.19
T ₁₀	4.42	4.77	3.50	4.10	3.97	4.12	4.25	3.81	3.55	4.09	2.94	2.23
Mean	4.02	4.40	3.66	3.55	3.75	4.07	4.10	4.16	3.94	3.65	2.84	2.22
S. Em. <u>+</u>	0.15	0.08	0.07	0.14	0.10	0.14	0.13	0.38	0.11	0.24	0.15	0.02
C.D. at 5%	NS	0.25	0.21	0.42	0.30	0.41	0.39	NS	0.33	0.71	0.45	0.03
CV %	6.41	3.24	3.33	6.88	4.69	5.84	5.56	15.98	4.84	11.26	9.34	8.57

www.arkgroup.co.in Page 253

Table 5: Effects of various organic seed treatments on seed vigour index I

Treatment	2	4	6	8	10	12	14	16	18	20	22	24
/Period	Month	Month	Month	Month								
T_1	1947.10	1830.64	1845.93	1348.90	2030.56	894.26	756.72	736.37	668.71	600.59	391.17	378.90
T_2	1875.39	1741.13	1725.38	982.53	2224.60	1226.31	989.89	1040.27	1055.44	898.86	484.26	482.45
T_3	1911.28	1827.47	1741.17	1311.96	1996.09	1321.37	1046.32	1011.77	1072.42	892.22	505.20	456.29
T_4	1849.03	1758.12	1860.74	1439.28	1940.05	1012.45	994.21	781.38	1103.19	845.26	575.25	444.11
T_5	1618.70	1651.95	1665.28	1521.07	2075.07	1161.72	1074.67	937.69	980.57	753.85	466.20	473.71
T_6	2012.50	1739.04	1881.31	1553.58	2128.30	1192.33	1111.89	865.65	988.39	844.82	547.91	470.45
T_7	1947.63	1733.61	1619.44	1650.84	2100.19	1126.75	1004.12	917.98	997.32	845.59	626.27	525.96
T_8	1924.23	1837.06	1796.04	1428.47	2106.70	1058.90	672.97	645.90	683.53	602.53	377.38	269.89
T ₉	2001.11	1715.04	1628.23	1118.38	1870.76	931.81	638.64	619.08	659.23	478.99	363.70	196.08
T ₁₀	2030.49	1818.88	1831.79	1602.15	2212.19	1218.54	875.04	866.73	963.13	824.86	520.06	436.82
Mean	1911.75	1765.29	1759.53	1395.72	2068.45	1114.44	916.45	842.28	917.19	758.76	485.74	413.47
S. Em. <u>+</u>	43.46	38.74	29.70	61.42	29.78	28.44	38.27	33.97	59.33	25.16	24.64	26.10
C.D. at 5%	129.11	115.09	88.23	182.46	88.47	84.50	113.69	100.92	176.26	74.73	73.20	77.53
CV %	3.94	3.80	2.92	7.62	2.49	4.42	7.23	6.99	11.20	5.74	8.78	15.54

Table 6: Effects of various organic seed treatments on seed vigour index II

Treatment	2	4	6	8	10	12	14	16	18	20	22	24
/Period	Month											
T_1	400.40	436.25	336.72	335.83	343.00	270.83	302.91	250.67	257.21	258.08	137.70	133.06
T_2	378.18	458.64	372.33	265.11	356.72	421.40	362.33	420.49	433.54	313.73	247.33	182.77
T_3	386.44	440.81	333.67	283.47	401.32	420.09	431.27	355.59	401.05	241.33	256.07	176.22
T_4	409.71	414.87	361.37	357.28	348.76	324.41	401.39	266.39	394.08	321.79	259.83	157.68
T ₅	342.76	422.05	367.36	301.76	354.32	435.04	373.97	313.23	340.03	315.65	238.37	163.53
T_6	367.27	374.80	315.57	333.95	361.72	429.24	375.65	338.39	376.53	399.32	265.70	175.43
T ₇	385.80	410.53	348.90	342.39	359.63	429.24	398.84	456.89	423.64	413.19	242.88	176.91
T_8	375.65	428.36	315.00	317.18	360.98	351.97	292.29	280.75	216.60	203.28	109.43	81.77
T ₉	397.38	360.85	279.04	198.32	300.57	378.77	230.92	318.10	143.37	109.24	116.48	77.37
T_{10}	431.75	441.92	326.99	388.41	372.07	298.66	388.29	300.75	299.79	331.28	230.60	166.51
Mean	387.53	418.91	335.70	312.37	355.91	375.96	355.79	330.12	328.58	290.69	210.43	149.13
S. Em. <u>+</u>	15.56	7.08	7.57	18.69	11.01	14.70	16.61	29.99	18.49	21.99	12.95	11.34
C.D. at 5%	46.22	21.02	22.49	55.51	32.71	43.67	49.35	89.10	54.94	65.34	38.48	33.69
CV %	6.95	2.93	3.91	10.36	5.36	6.83	8.09	15.74	9.75	13.10	10.66	15.68

www.arkgroup.co.in Page 254

Table 7: Effects of various organic seed treatments on seed moisture content (%)

Treatment /Period	2 Month	4 Month	6 Month	8 Month	10 Month	12 Month	14 Month	16 Month	18 Month	20 Month	22 Month	24 Month
T ₁	5.70	9.70	9.03	9.04	8.42	7.52	8.07	9.51	7.77	8.84	8.10	7.62
T_2	6.26	9.37	9.04	9.18	8.87	7.45	8.93	8.91	9.14	9.03	7.56	7.82
T_3	6.26	9.76	9.69	8.67	8.23	7.48	8.27	10.00	7.92	8.37	7.98	7.77
T_4	6.15	8.89	8.79	8.68	8.90	7.48	8.12	8.97	8.58	8.31	8.06	7.25
T ₅	5.59	9.70	9.79	9.11	8.95	8.04	8.27	9.33	8.46	8.92	7.91	7.82
T_6	5.59	9.51	9.03	8.56	8.65	8.17	8.74	8.82	7.95	8.34	7.92	6.73
T ₇	6.44	9.15	9.11	9.06	8.23	8.17	8.71	9.20	8.04	8.64	7.36	7.23
T ₈	6.60	9.54	8.71	8.82	8.27	7.57	8.12	9.62	7.85	8.01	7.52	7.24
T_9	5.66	8.94	8.87	8.39	8.84	7.83	8.80	8.91	8.31	8.32	7.37	7.27
T ₁₀	5.63	9.49	9.15	9.49	9.12	8.02	9.01	9.34	8.55	8.49	7.38	6.83
Mean	5.99	9.41	9.12	8.90	8.65	7.77	8.51	9.26	8.26	8.53	7.71	7.35
S. Em. <u>+</u>	0.09	0.10	0.05	0.06	0.09	0.07	0.06	0.09	0.06	0.34	0.04	0.06
C.D. at 5%	0.28	0.30	0.14	0.19	0.26	0.22	0.19	0.27	0.18	NS	0.13	0.17
CV %	2.70	1.88	0.87	1.25	1.73	1.64	1.28	1.72	1.29	6.98	0.98	1.35

[MS received: May 11, 2017] [MS accepted: May 22, 2017]

www.arkgroup.co.in