IMPACT OF WEATHER FACTORS ON SOIL INVERTEBRATE FAUNA IN Bt AND NON Bt COTTON FIELDS OF WARANGAL, TELANGANA, INDIA

*LAXMAN, P. AND SAMMAIAH, CHINTHA

ENVIRONMENTAL ENTOMOLOGY DEPARTMENT OF ZOOLOGY, KAKATIYA UNIVERSITY WARANGAL-506 009, ANDHRA PRADESH, INDIA

*E-MAIL: peesarilaxman@yahoo.co.in

ABSTRACT

Soil invertebrates were collected by pitfall traps in Bt and non Bt cotton fields of Warangal, Telangana from June 2012 to March 2013. Four insect orders such as Collembola Hymenoptera, Coleoptera, Orthoptera, and Araneida (spiders) and Acari (mites) were collected and correlation coefficient was calculated between soil fauna and weather factors, such as maximum and minimum temperature, relative humidity and rainfall. Soil fauna showed positive correlation with minimum temperature, relative humidity (morning and evening) and rainfall and negative correlation with maximum temperature in Bt and non Bt cotton.

KEY WORDS: Bt, cotton, non Bt, soil invertebrates

INTRODUCTION

Soil biota mediates or regulates a variety of functions essential for plant growth and productivity, soil resource structure and ecosystem health. Soil faunal (micro, meso, and macro fauna) play a critical role in a variety of biological functions both in the rhizosphere and the soil decomposing plant residues (Coleman Crossley Jr., 1995; Gupta and Yeates, 1997) and without these organisms nature would have no way of recycling organic material on its own (Trombetti and Williams, 1999). They perform a number of key functions essential to plants, such as nutrient cycling, disease regulation, agrochemical degradation, development and maintenance of physico-chemical properties of soil. Soil invertebrates are an important group in agro ecosystem which greater affected by weather factors like temperature, relative humidity and rainfall. Temperature was reported as critical factor in determining the survival and development of immature stages and the reproductive performance of the arthropods (Chandrika Mohan *et al.*, 2004).

A significant proportion of the world biodiversity is recorded in agroecosystems (Pimentel et al., 1992). Soil invertebrates are ubiquitous in natural and agricultural habitats. They are useful indicators of overall species and health of terrestrial richness communities (Noss, 1990). There is no information on soil invertebrates diversity and ecology in Bt and non Bt cotton fields. The present study was undertaken to study the population of soil invertebrates' community in Bt and non Bt cotton fields of Warangal District, Telangana, India.

MATERIAL AND METHODS

invertebrates collected monthly by pitfall trap method (Coddington and Levi 1991) in Bt and non Bt cotton fields of Warangal (17°.51' NL and 79°.22/EI at 380m MSL) during June 2012 to March 2013. The collected soil invertebrates were preserved in 80 per cent ethyl alcohol with a few drops of and identified under glycerin stereoscopic binocular microscope help of kevs. The invertebrates belonging to different taxa were enumerated and their mean number per trap was calculated. Weather parameters of temperature, relative humidity (morning, evening) and rainfall was measured during the study period and calculated its impact on soil invertebrates abundance.

RESULTS AND DISCUSSION

A total of 46 species belonging to four insect orders, Collembola, Hymenoptera Coleoptera and Orthoptera, and Araneae (spiders) and Acari (mites) were recorded during cropping seasons of Bt cotton and non Bt cotton fields during 2012-2013 (Table 1).

Bt cotton

The species composition of Collembola represented by Sminthurus **Arrhopalites** pricipalis, viridis, Isostomidae sp, Isostoma viridis, Desoria olivaea, Folsomia quadrioculata, Entomobryid sp, Pseudosinella-Entomobrya sp, atrocineta, Lepidocyrtus lignorum, Cyphoderus, and Podura aquatic. Hymenoptera represented Monomorium sp, Crematogaster sp., Componatus Pochycondyla tesserinoda, Occophylla maragdina, aleropunctata Wasmannia Diacamma ecylonense. Coleoptera was represented by Anthia sexgutta, Neolema sexpunctata, Hybosorus strcorariusdor, scarob, Geotrupes

Pterostichus melanarius. and Harpalus. Orthoptera represented by Achetadomesticus, Grylllispennsylvanic Nemobiussylvestrs. Gryllusassimillis. Araneae (Spiders) represented by Pholcus Phalangioideis, Gonngylidium Thanatus. Zodarion Sp, Schizocosa Saltarix, and Rabidosa Punctulata. The order Acarina was represented bv Eustigmaeus, Gamasidmite, Oribatidamite. *Thinoseius* spinosus, and Mycobates sarakensis.

Non Bt-cotton

The order Collembola represented by Sminthurus viridis, Arrhopalites pricipalis, Isostomidae sp. Isostoma viridis, Desoria olivaea, Folsomia quadrioculata, Entomobryid sp, Pseudosinella- sp, Entomobrya atrocineta, Lepidocyrtus lignorum, Mega phoruraarchia Cyphoderus, Podura aquatic, Hypogostrura harveyi. Hymenoptera represented in Monomorium Crematogaster sp., **Componatus** Pochycondyla tesserinoda, Occophylla maragdina, Wasmannia aleropunctata Diacamma cfecvlonense. Coleoptera was represented by Anthia Neolema sexpunctata, sexgutta, Oryzaephilus surinamensis, Hybosorus scarob, Geotrupes strcorariusdor, Pterostichus melanarius, Harpalus, and Selenophorus sp. Orthoptera was represented by Achetadomesticus, Grylllispennsylvanicus, Nemobiussylve strs, and Gryllusassimillis.. Araneae (Spiders) was represented by Pholcus phalangioideis, Thanatus. Gonngylidium rufipes, Zodarion Sp, Schizocosa Saltarix, Rabidosa Punctulata and Thomisus spectabilis. The order Acarina was represented by **Trombidium** Eustigmaeus, sp, Gamasidmite, Oribatida-mite, Thinoseius spinosus, and Mycobates sarakensis. Mean abundance of the different orders presented in (Table 2)

revealed that all abundance of insect orders such as collembolan. hymenoptera orthoptera and coleopteran little higher in non Bt cotton fields than the Bt cotton fields. Spiders and mites also recorded little more abundance in non Bt-cotton. Several studies reviewed through meta-analysis (Naranjo, 2009) have suggested that effects of Bt crops on soil arthropods are little. The results also supported by the (Naranjo, 2009) and Dillon and Sharma (2013).

Soil arthropod fauna showed positive (significant at p= 0.05) correlation with minimum temperature, relative humidity (morning and evening) and rainfall and negative correlation with maximum temperature (Table 3).

CONCLUSION

From the above results it can be seen that a total of 46 species belonging to four insect orders, Collembola, Hymenoptera Coleoptera and Orthoptera, and Araneae (spiders) and Acari (mites) were recorded during cropping seasons of Bt cotton and non Bt cotton fields. Soil fauna showed positive correlation with minimum relative temperature, humidity (morning and evening) and rainfall negative correlation maximum temperature in Bt and non Bt cotton.

REFERENCES

Chandrika Mohan, Nair, C. P. R., Rajan, P. and Bindhumol, P. (2004)Influence Temperature on biological parameters of Goniozus nephantidis Mues. and Elasmus nephantidis Rohw., two promising parasitoids of the coconut black headed caterpillar, Opisina arenosella Walker. J. Plant Crops., 32 (Suppl.): 306-308.

- Coddington, J. A. and Levi, H. W. (1991). Systematics and evolution of spiders (Araneae). *Annu. Rev. Ecil. Syst.*, **22**: 565-592.
- Coleman, D. C. and Crossley, Jr. D. A. (1995). Fundamentals of Soil Ecology, Academic Press, New York.
- Gupta, V. V. S. R and Yeates, G. W. (1997). Soil micro fauna as indicators of soil health. In Biological Indicators of Soil Health. Pankhurst, C.E, Doube, B. and Gupta .V.V.S.R (Eds) pp. 201 233. International, Oxon, U.K.
- Dhillon, M. K. and Sharma, H. C. (2013). Comparative studies on the effects of Bt transgenic and non-transgenic cotton on arthropod diversity, seed cotton yield and bollworms control. *J. Envrionl. Biol.*, 34: 67-73.
- Naranjo, S. E. (2009). Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev., Pavshnr, 4: 1-23.
- Noss, R. F. (1990). Indicators of monitoring biodiversity a hierarchical approach. *Conservation Biol.*, **4**: 355.
- Pimentel, D.; Stachow, U.; Takacs, D. A.; Brubaker; H. W.; Dumas A. R.; Meaney, J. J., Neil, J. A. O.; Onsi, D. E. and Corzilius, D. B. (1992). Conserving biological diversity in agricultural forestry systems. *Bio Sci.*, **42**: 354 362.
- Trombetti, S. and Williams, C. (1999). Investigation of soil dwelling invertebrates. *Ecol.* **70**: 220 260.

Table 1: Diversity of soil fauna in Bt and non Bt cotton fields at Warangal

Order	Family	Bt Cotton	Non Bt Cotton				
			ecies				
Collembila	Sminthridae	sminthurus viridis	sminthurus viridis				
	Sminthridae	arrhopalites pricipalis	arrhopalites pricipalis				
	Isostomidae	Isostomidae sp	Isostomidae sp				
	Isostomidae	Isostoma viridis	Isostoma viridis				
	Isostomidae	Desoria olivaea	Desoria olivaea				
	Isostomidae	Folsomia quadrioculata	Folsomia quadrioculata				
	Entomobrydae	Entomobryid sp(slender sp)	Entomobryid sp(slender sp)				
	Entomobrydae	Pseudosinella- sp	Pseudosinella- sp				
	Entomobrydae	Entomobrya atrocineta	Entomobrya atrocineta				
	Onychiridae	Lepidocyrtus lignorum	Lepidocyrtus lignorum				
			Megaphorura archia				
	Cyphoderidae	Cyphoderus	Cyphoderus				
	Produridae	Podura aquatic	Podura aquatic				
			Hypogostrura harveyi				
Hymenoptera	Formicidae	Monomoriumsp	Monomoriumsp				
	6677	Crematogaster	Crematogaster				
	٠,	Componotus	Componotus				
	٠,	Pochycondyla tesserinda	Pochycondyla tesserinda				
	٠,	Occophyllas maragdina	Occophyllas maragdina				
		(red ants)	(red ants)				
	٠,	Wasmannia aleropunctata	Wasmannia aleropunctata				
	Ponerinae	Diacamma ceylonense	Diacamma ceylonense				
Coleoptera	Chrysomelidae	Anthia sexgutta	Anthia sexgutta				
1	,	Neolema sexpunctata	Neolema sexpunctata				
			Oryzaephilus surinamensis				
	Hybosoridae	Hybosorus scarob	Hybosorus scarob				
	Scarabaeidae	Geotrupes strcorariusdor	Geotrupes strcorariusdor				
	Carabidae	Pterostichus melanarius	Pterostichus melanarius				
	Carabidae	Harpalus	Harpalus				
	Carabidae		Selenophorus sp				
Orthoptera	Gryllidae	Achetadomesticus	Achetadomesticus				
	Gryllidae	Grylllispennsylvanicus	Grylllispennsylvanicus				
	Gryllidae	Nemobiussylvestrs	Nemobiussylvestrs				
	Gryllidae	Gryllusassimillis	Gryllusassimillis				
Araneae	Pholcidae	Pholcus Phalangioideis	Pholcus Phalangioideis				
	Philodromidae	Thanatus SP	Thanatus SP				
	Linyphiidae	Gonngylidium Rufipes	Gonngylidium Rufipes				
	Zodariidae	Zodarion Sp	Zodarion Sp				
	Lycosidae	Schizocosa Saltarix	Schizocosa Saltarix				
	Lycosidae	Rabidosa Punctulata	Rabidosa Punctulata				
	Thomisidae		Thomisus spectabilis				
Acarina	Trombidiidae		Trombidium sp				
	Stigmaeidae	Eustigmaeus	Eustigmaeus				
	gamasiidae	Gamasidmite	Gamasidmite				
	Oribatidae	Oribatida-mite	Oribatida-mite				
	Oribatidae	Thinoseius spinosus	Thinoseius spinosus				
	Tectocepheidae	Mycobates sarakensis	Mycobates sarakensis				

Table 2: Abundance of soil invertebrates (Mean $\pm SE$) in Bt and non Bt-cotton fields of Warangal

Months	Bt	Non Bt	Bt	Non Bt	Bt	Non Bt	Bt	Non Bt	Bt	Non Bt	Bt	Non Bt
	Cotton	Cotton	Cotton	Cotton	Cotton	Cotton	Cotton	Cotton	Cotton	Cotton	Cotton	Cotton
	collem	Collem	ants	ants	beetles	beetles	crickets	crickets	spiders	spiders	mites	mites
June	15±2.72	31±2.44	17.6±2.65	18.6±2.31	2±0.77	4.4±1.56	2±0.70	2.4±0.24	2±1.04	2.2±0.96	3±0.88	4.6±0.81
July	16.8±1.31	32.2±5.95	13.2±2.05	19.8±2.90	3±0.54	5±1.44	2±0.77	3±1.34	2.4 ± 0.67	2.6±0.50	3.6±0.6	4.8±0.66
Aug.	21.8±1.28	30±7.58	11±2.40	14 ±3.88	4.2±0.66	5.8±1.01	3±0.54	4.2±0.66	3.4±1.07	3.2±0.37	3±0.54	5.2±1.39
Sep.	20.6±0.92	27±5.14	9.2±2.13	12.4±1.46	4.6±0.81	9±2.21	4±1.48	8.4±1.20	4.4±1.53	7.4±0.67	3.4±0.92	8±1.84
Oct.	16±1.37	22±3.57	8±1.81	9.6±1.60	3±0.31	8.4±1.43	3.6±0.87	8±1.26	3.8±0.86	7.4±1.28	2.6±0.74	7±1.51
Nov.	13.4±2.11	19.6±2.24	5.8±0.58	7.6±0.67	2±0.44	4±1.18	2.6±0.74	3.8±0.48	1.6±0.81	2.8±0.37	1.4±0.87	2.6±0.50
Dec.	9.4±1.61	17±2.09	4.4±1.09	6.8±1.31	1.6±0.81	4±0.70	1.6±0.50	3±0.31	1.4±0.50	2.4±0.50	1±0.77	1.6±0.24
Jan.	4±0.70	11±1.87	3±0.63	5.4±0.67	1±0.77	3±1.26	0.8±0.58	2.6±0.92	0.8±0.58	2±0.54	0.8±0.37	2±0.44
Feb.	4.6±0.74	8±1.70	2±0.31	4±1.04	0.6±0.4	2.6±0.67	0.8±0.2	2±0.44	0	1.6±0.24	0.6±0.4	2.6±1.02
Mar	3±0.70	6.2±0.96	1.6±0.81	3.4±0.74	0	2±0.54	0	1.44±0.24	0	1.6±0.24	0	2±0.44

Table 3: correlation of soil arthropods fauna with weather factors in Bt and non Bt Cotton crops

Correlation with Weather factors	Collembolan		Ants		Beetles		Crickets		Spiders		Mites	
	Bt	Non Bt	Bt	Non Bt	Bt	Non Bt	Bt	Non Bt	Bt	Non Bt	Bt	Non Bt
Max. Tem(°c)	-0.139	-0.035	0.179	0.144	-0.265	-0.082	-0.239	-0.131	-0.153	0.030	0.003	0.124
Min Tem(°c)	0.541*	0.521*	0.590*	0.567*	0.428*	0.417*	0.355*	0.279	0.449*	0.387*	0.570*	0.636*
R. H.M%	0.530*	0.574*	0.436*	0.479*	0.594*	0.471*	0.586*	0.418*	0.523*	0.346*	0.595*	0387*
R.H.E%	0.525*	0.496*	0.470*	0.468*	0.511*	0.202	0.367*	0.104	0.326	0.455*	0.510*	0.370*
Rainfall(mm)	0.676*	0.727*	0.594*	0.760*	0.705*	0.474*	0.438*	0.390*	0.744*	0.372*	0.792*	0.584*

^{*}Significant at P=0.05

[MS received: July 9,2014]

[MS accepted: August 3, 2014]