WEED MANAGEMENT IN AEROBIC RICE UNDER SOUTH GUJARAT CONDITIONS

USADADIA, V. P.; PATEL, P. B.; *BAVALGAVE, V. G. AND PATIL, V. A.

MAIN RICE RESEARCH CENTRE
NAVSARI AGRICULTURAL UNIVERSITY
NAVSARI - 396 450 (GUJARAT), INDIA

*EMAIL: vgbavalgave@gmail.com

ABSTRACT

A field experiment was conducted during kharif 2010 to 2012 at Main Rice Research Centre, Navsari Agricultural University, Navsari, Gujarat. The study consisted of 8 treatments viz., Un weeded control, Hand weeding and followed interculturing at 20 & 40 DAS, Pendimethalin @ 1.0 kg a.i./ha, as pre emergence, 2,4-D amine salt @ 1.0 kg a.i./ha, as post emergence at 20 DAS, Bispyribac sodium 10% sc, 10 ml/10 litter water (45g a.i./ha) as post emergence at 20 DAS, Only green manuring of dhaincha, Dhaincha + 2,4- D amine salt @ 1.0 kg a.i./ha as post emergence (30 DAS) and Weed free up to panicle initiation were tested in randomized block design with three replications. The study identified application of Pendimethalin @ 1.0 kg a.i./ha as pre emergence or one hand weeding and followed by interculturing at 20 and 40 DAS or Bispyribac sodium 10% sc, 10 ml/10 liter water (45g a.i./ha) as post emergence at 20 DAS, as effective treatments for weed control and realizing higher net income.

KEY WORDS: Aerobic rice, economics, weed density, weed management

INTRODUCTION

Aerobic rice (Oryza sativa L.) is a new concept of growing rice in non puddled aerobic soils under irrigation just like an irrigated upland crop such as wheat or maize without standing water. Early experiments of growing aerobic rice in China and Brazil suggest that water inputs were more than 50 per cent lower (only 470-650 mm), water productivity 64-88 per cent higher and labour use 55 per cent lower in aerobic rice (Bouman et al., 2002). Aerobic systems are subject to much higher weed pressure than conventional puddled transplanting systems (Rao et al., 2007). Aerobic soil dry-tillage and alternate wetting and drying conditions, on the other hand, are conducive to the germination and growth of weeds causing grain yield losses of 50-91 per cent (Rao et al., 2007). In tropics, average rice yield losses from weeds is 35 per cent, while in direct seeded aerobic rice yield penalty is as high as 50-91 per cent. Thus, weeds are the most severe constraint to aerobic rice production and timely weed management is crucial to increasing the productivity of aerobic rice. Most upland and aerobic rice growers in Asia mechanically weed their crops two or three times per season, investing up to 190 person days/ha in hand weeding (Roder, 2001). Herbicides are considered to be an alternative/ supplement to hand weeding. Both pre-emergence and post-emergence herbicides can be used in aerobic rice fields and they are
effective, if properly used (Singh et al., 2006).

Since, the concept of aerobic rice is new growing rice under aerobic conditions on raised beds or on flat land would require suitable, effective and economic weed-control methods; development of new improved herbicides for aerobic dry-seeded rice is also needed. The increasing cost of labour threatens the sustainability of transplanted rice. Direct-seeding is cost effective, can save water through either rice crop establishment and allows early sowing of wheat (Ladha et al., 2003). However, this type of research works are less carried in our context. Therefore, the present experiment was conducted to develop effective and economical integrated weed management practices for dry direct-seeded rice.

MATERIALS AND METHODS
A field experiment was conducted during kharif 2010 to 2012 at Main Rice Research Centre, Navsari Agricultural University, Navsari. The soil of the experimental field was clayey in texture and PH was high (8.0). The soil was low in available nitrogen (252 kg/ha), medium in available phosphorus (41 kg/ha) and high in available potassium (592 kg/ha). Experiment consisting of 8 treatments viz., T₁: Un weeded control, T₂: Hand weeding followed by interculturing and at 20 & 40 DAS, T₃: Pendimethalin @ 1.0 kg a.i/ha as pre emergence, T₄: 2,4-D amine salt @ 1.0 kg a.i/ha as post emergence at 20 DAS, T₅: Bispyribac sodium 10% sc 45 gm a.i/ha as post emergence at 20 DAS, T₆: Only green manuring of dhaincha, T₇: Dhaincha + 2,4- D amine salt @ 1.0 kg a.i./ha as post emergence at 30 DAS and T₈: Weed free up to panicle initiation. These treatments were replicated three times in a randomized block design. Field was prepared by ploughing followed by passing the harrow and leveler. The seeds of NAUR-1, popular medium duration variety was sown (40 kg/ha) at the spacing of 30 cm between rows. The recommended dose of fertilizer 80: 30:00 kg NPK/ha was applied. Full dose of P₂O₅ and K₂O was applied at the time of sowing by using Single Super Phosphate and Murate of Potash, respectively. The 30 per cent of nitrogen was applied as a basal, 30 per cent at tillering and remaining 40 per cent at panicle initiation stage.

The observation on plant height, numbers of tillers per square meter, effective tillers per square meter, panicle length, grain and straw yields, weed density and weed dry weight were recorded at harvest. Since the data on weed density and weed dry weight showed high variation, the data were subjected to square root transformation and the statistical analysis was done. Weed index and weed control efficiency were calculated as per the standard formulae.

\[
\text{Weed control efficiency} = \frac{\text{Dry matter production of weed in un weeded plot} - \text{Dry weight production of weeds in treated plot}}{\text{Dry matter production of weed in un weeded plot}} \times 100
\]

\[
\text{Weed control index} = \frac{\text{Yield from weed free plot-Yield from treatment plot}}{\text{Yield from weed free plot}} \times 100
\]
RESULTS AND DISCUSSION

Effect on weeds

The major weeds infesting the experimental field were *Echinochola colonum* L., *Digitaria sanguinalis*, *Cynodon dactylon* L., *Desmostachya bipinnata*, *Eclipta alba*, *Portulaca oleracea* and *Cyperus rotundus* L. The weed count and weed dry weight was taken during all the years and results are presented in Table 1. In three years pooled results, significantly lower weed density and weeds dry weight were registered in treatment weed free up to panicle initiation than rest of the treatments, but which was remained at par with Bispyribac sodium 10% sc 45 g a.i./ha as post emergence at 20 DAS and Pendimethalin @ 1.0 kg a.i/ha as pre emergence, whereas un weeded check recorded significantly higher weed density and weed dry weight. Higher weed control efficiency was recorded with Bispyribac sodium 10% sc, 45 gm a.i/ha as post emergence at 20 DAS, which was followed by Pendimethalin @ 1.0 kg a.i/ha as pre emergence and Hand weeding, followed interculturing at 20 & 40 DAS. The results are in line with the findings of Thakur and Bassi (1994), who observed the application of pendimethalin @ 1.0 kg a.i./ ha followed by one hand weeding at 30 DAS were most effective in minimizing the weed dry weight (215 g/m² and 133 g/m²) as compared to weedy check (414 g/m²) in direct sown rainfed rice. Lower weed index was recorded with interculturing and hand weeding at 20 & 40 DAS followed by Bispyribac sodium 10% sc, 10 ml/10 lit water (45 gm a.i/ha) as post emergence at 20 DAS and Pendimethalin @ 1.0 kg a.i/ha as pre emergence. This was mainly due to better control of weeds growth even up to harvest resulting in lower dry weight of weeds.

Effect on crop growth

The weed free treatment up to panicle initiation stage recorded higher plant height, more number of tillers per square meter, more number of effective tillers per square meter and higher panicle length, but it was which remained at par with treatment T₂, T₅ and T₃ (Table 2). Among the herbicides, Bispyribac sodium 10% sc 10 ml/ 10 lit water (45 gm a.i/ha) as post emergence at 20 DAS (T₅) recorded higher plant height, more number of tillers per square meter and panicle length, but on par with Pendimethalin @ 1.0 kg a.i/ha as pre emergence. Singh et al. (2006) and Bhurer et al. (2013) reported similar results with the use of Pendimethalin in dry direct seeded rice.

Effect on yield and yield attributes

The results revealed that different weed management treatments had significant effect on yield attributes and grain yield of aerobic rice. The significantly higher grain yield (Tables 2) was recorded with treatment T₈ i.e., weed free up to panicle initiation, which was at par with treatments T₂, T₅ and T₃. Among the herbicides, Bispyribac sodium 10% sc, 45 gm a.i/ha as post emergence at 20 DAS (T₅) showed superiority over other herbicides applied as post emergence, but it was at par with Pendimethalin @ 1.0 kg a.i/ha as pre emergence (T₃). Treatments T₈, T₂, T₃ and T₅ were at par with each other, but were significantly superior over rest of the treatments. In case of straw yield, the maximum straw yield was recorded with treatment T₈, but it remained at par with T₅ and T₂ during the year 2010, 2011 and 2012 and T₂, T₃ and T₅ in the pooled analysis. On pooled basis, treatment T₈, T₅ and T₂ registered 6042, 5361 and 5458 kg/ha of paddy straw yield. Singh et al. (2006) and Bhurer et al. (2013)
reported similar results with the use of Pendimethalin in dry direct seeded rice.

Economics

The different weed management treatments recorded varying net income realized due to paddy. The net realization of Rs. 34998/ha with CBR of 1:2.73 was recorded with treatment T₃ (Pendimethalin @ 1.0 kg a.i/ha as pre emergence) followed by T₅ (Bispyribac sodium 10% sc, 45 gm a.i/ha as post emergence at 20 DAS) with CBR of 1:2.51 (Table 2). This was mainly due to effective weed control and higher grain and straw yield in these treatments. Similar findings were reported by Bhurer et al. (2013) in aerobic rice.

CONCLUSION

Looking to the experimental results, significantly higher grain yield and net realization (Rs. 36770/ha) was recorded with treatment T₈ (weed free upto panicle initiation). However, considering the CBR, T₃ (pendimethalin @ 1.0 kg a.i./ha as pre emergence) emerged out as the best treatment followed by T₅ (Bispyribac sodium 10% sc, as post emergence at 20 DAS) with net realization of Rs.34988/ha. The next in order was treatment T₆ with net realization of Rs. 34913/ha with CBR value 2.51. Taking into consideration the problem of availability of labour during weeding operation and convenience of farmers, the treatment T₃ (pendimethalin @ 1.0 kg a.i./ha as pre emergence) was found more viable.

Recommendation for the farmers

The farmers of South Gujarat heavy rainfall zone (AES III) growing irrigated drilled paddy (aerobic rice) are advised to apply pendimethalin @ 1.0 kg a.i./ha as pre emergence for effective weed control or hand weeding followed by interculturing at 20 and 40 DAS or Bispyribac sodium 10% sc 10ml/10 liter water as post emergence at 20 DAS for effective weed control and realizing higher net income.

REFERENCES

Rodder, W. (2001). Slash and burn rice systems in the hills of...
Northern Lao PDR. In. Description, Challenges and Opportunities, IRRI, LOS Banos, Philippines, 201 pp.

Table 1: Effect of weed management treatments on weed parameters

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Weed density (No./ m²)</th>
<th>Weed dry weight (g/m²)</th>
<th>Weed index</th>
<th>Weed control efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁ Un weeded control</td>
<td>5.775(24.917)</td>
<td>7.061(52.538)</td>
<td>62.1</td>
<td>_</td>
</tr>
<tr>
<td>T₂ Hand weeding followed by interculturing at 20 & 40 DAS</td>
<td>4.881(24.667)</td>
<td>4.400(21.522)</td>
<td>6.17</td>
<td>59.03</td>
</tr>
<tr>
<td>T₃ Pendimethalin @ 1.0 kg a.i/ha as pre emergence</td>
<td>4.231(19.583)</td>
<td>4.146(21.110)</td>
<td>9.8</td>
<td>59.81</td>
</tr>
<tr>
<td>T₄ 2,4-D amine salt @ 1.0 kg a.i/ha as post emergence at 20 DAS</td>
<td>4.636(23.083)</td>
<td>5.314(32.548)</td>
<td>25.39</td>
<td>38.04</td>
</tr>
<tr>
<td>T₅ Bispyribac sodium 10% sc, 10 ml/10 lit water (45 gm a.i/ha) as post emergence at 20 DAS</td>
<td>3.975(17.250)</td>
<td>3.714(15.843)</td>
<td>6.9</td>
<td>69.84</td>
</tr>
<tr>
<td>T₆ Only green manuring of dhaincha</td>
<td>4.750(23.333)</td>
<td>5.744(36.106)</td>
<td>22.18</td>
<td>31.27</td>
</tr>
<tr>
<td>T₇ Dhaincha + 2,4-D amine salt @ 1.0 kg a.i/ha as post emergence at 30 DAS</td>
<td>4.570(21.500)</td>
<td>5.326(31.232)</td>
<td>26.24</td>
<td>40.55</td>
</tr>
<tr>
<td>T₈ Weed free up to panicle initiation</td>
<td>3.554(13.000)</td>
<td>3.637(14.265)</td>
<td>-</td>
<td>72.84</td>
</tr>
</tbody>
</table>

S. Em ± 0.25 0.41
C.D. at 5 % 0.72 1.26
C.V. (%) 19 20

\(Y \times T \)

S. Em ± 0.43 50
C.D. at 5 % NS 1.41
C.V. (%) 19 20

Note: Figures in the brackets are original value, whereas outside brackets are square root transform values.
Table 2: Effect of weed management treatments on growth, yield and economics of aerobic rice (Pooled of three years)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Plant height(cm)</th>
<th>Number of tillers /m²</th>
<th>Effective tillers / m²</th>
<th>Panicle length (cm)</th>
<th>Grain Yield (kg/ha)</th>
<th>Straw Yield (kg/ha)</th>
<th>Net profit (Rs./ha)</th>
<th>CBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1 Un weeded control</td>
<td>96</td>
<td>103</td>
<td>94</td>
<td>24.1</td>
<td>1662</td>
<td>2847</td>
<td>5290</td>
<td>1:1.28</td>
</tr>
<tr>
<td>T_2 Hand weeding followed by interculturing at 20 & 40 DAS</td>
<td>105</td>
<td>213</td>
<td>206</td>
<td>25.8</td>
<td>4115</td>
<td>5458</td>
<td>33722</td>
<td>1:2.41</td>
</tr>
<tr>
<td>T_3 Pendimethalin @ 1.0 kg a.i/ha as pre emergence</td>
<td>105</td>
<td>208</td>
<td>199</td>
<td>25.6</td>
<td>3956</td>
<td>5194</td>
<td>34988</td>
<td>1:2.73</td>
</tr>
<tr>
<td>T_4 2,4-D amine salt @ 1.0 kg a.i/ha as post emergence at 20 DAS</td>
<td>99</td>
<td>172</td>
<td>161</td>
<td>24.5</td>
<td>3272</td>
<td>4438</td>
<td>26521</td>
<td>1:2.37</td>
</tr>
<tr>
<td>T_5 Bispyribac sodium 10% sc, 10 ml/10 lit water (45 gm a.i/ha) as post emergence at 20 DAS</td>
<td>105</td>
<td>210</td>
<td>201</td>
<td>25.7</td>
<td>4083</td>
<td>5361</td>
<td>34913</td>
<td>1:2.51</td>
</tr>
<tr>
<td>T_6 Only green manuring of dhaincha</td>
<td>103</td>
<td>176</td>
<td>166</td>
<td>24.8</td>
<td>3413</td>
<td>4618</td>
<td>24458</td>
<td>1:2.04</td>
</tr>
<tr>
<td>T_7 Dhaincha + 2,4- D amine salt @ 1.0 kg a.i./ha as post emergence at 30 DAS</td>
<td>102</td>
<td>179</td>
<td>169</td>
<td>24.5</td>
<td>3235</td>
<td>4514</td>
<td>21691</td>
<td>1:1.91</td>
</tr>
<tr>
<td>T_8 Weed free up to panicle initiation</td>
<td>108</td>
<td>217</td>
<td>210</td>
<td>26.1</td>
<td>4386</td>
<td>6042</td>
<td>36770</td>
<td>1:2.48</td>
</tr>
<tr>
<td>S.Em +</td>
<td>1.34</td>
<td>6.3</td>
<td>5.6</td>
<td>0.24</td>
<td>161</td>
<td>315</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C.D. at 5 %</td>
<td>3.4</td>
<td>19</td>
<td>17</td>
<td>0.68</td>
<td>489</td>
<td>954</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Paddy grain: Rs.12.00/kg, Straw: Rs. 1.50/kg, N: Rs.39.70/kg, P: Rs.26.25/kg, Pendimethalin: Rs.450/lit, Bispyribac sodium (Adora): Rs.370/40 ml and 2,4-D amine salt (Zura): Rs.150/400 ml

[MS received: May 02, 2016] [MS accepted: June 06, 2016]